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Abstract 
 

Digital electrocardiographs are now widely available and a large number of digital 
electrocardiograms (ECGs) have been recorded and stored. The present study 
describes the development and clinical applications of a large database of such 
digital ECGs, namely the CODE (Clinical Outcomes in Digital Electrocardiology) 
study.  
 
ECGs obtained by the Telehealth Network of Minas Gerais, Brazil, from 2010-17, 
were organized in a structured database. A hierarchical free-text machine learning 
algorithm recognized specific ECG diagnoses from cardiologist reports.  The 
Glasgow ECG Analysis Program provided Minnesota Codes and automatic 
diagnostic statements. The presence of a specific ECG abnormality was considered 
when both automatic and medical diagnosis were concordant; cases of discordance 
were decided using heuristisc rules and manual review. The ECG database was 
linked to the national mortality information system using probabilistic linkage 
methods.  
 
From 2,470,424 ECGs, 1,773,689 patients were identified. After excluding the ECGs 
with technical problems and patients <16 years-old, 1,558,415 patients were studied. 
High performance measures were obtained using an end-to-end deep neural network 
trained to detect 6 types of ECG abnormalities, with F1 scores >80% and specificity 
>99% in an independent test dataset. We also evaluated the risk of mortality 
associated with the presence of atrial fibrillation (AF), which showed that AF was a 
strong predictor of cardiovascular mortality and mortality for all causes, with 
increased risk in women. 
 
In conclusion, a large database that comprises all ECGs performed by a large 
telehealth network can be useful for further developments in the field of digital 
electrocardiography, clinical cardiology and cardiovascular epidemiology.  
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Introduction 
 
Cardiovascular (CV) diseases are the leading cause of death worldwide and, in 2015, 

caused 18 million deaths worldwide (1). The electrocardiogram (ECG) is an important 

diagnostic tool for this group of diseases, as well as an ancillary method for many 

others, with established value in the diagnosis, prognosis and therapeutic monitoring 

of several CV diseases. Most of the knowledge on the value of the ECG has been 

obtained by clinical observations, correlations of ECG findings with abnormalities 

observed in imaging or pathological studies, or derived from cohort studies. The 

availability of digital ECGs, in the last few decades, has permitted the development of 

digital ECG databases (2), that have been used for several purposes, such as to 

evaluate the prognosis of ECG abnormalities in communities and specific 

populations, to study genetic determinants of arrhythmias and ECG abnormalities 

and to determine the natural history of diseases. Databases have also been 

developed for serving as a reference for electrocardiographic computer 

measurement and diagnostic programs (3) and to develop new methods or 

algorithms for ECG analysis (4).  

Most of these databases do not have the amount of data which is now available, with 

many of them being developed in the dawn of the digital era. Digital ECG machines 

have now become widely available and large number of exams are being stored in 

hospital and health services in different countries and are often linked to electronic 

health records or administrative databases. This huge amount of data - big data, 

analyzed by methods recently developed in the machine learning and data mining 

fields, may allow the recognition of hidden patterns that were not detected in the past 

by traditional statistical methods. This may serve for the development of new 

analytical tools, opening up a world of new possibilities (5). We hypothesize that a 
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large, annotated, database of digital ECGs, obtained in the community and linked 

with hospitalizations and death obtained from health or vital records will constitute an 

electronic cohort able to provide clinically useful prognostic information, as well as a 

better classification method for standard 12-lead ECG. The aim of the CODE study is 

to develop such a dataset and conduct studies on prognosis and classification of 

electrocardiograms. The present report i) describes the development of a large 

database of digital ECGs linked to mortality data, ii) shows initial results and iii) 

discusses its challenges and potential applications. 

History of development 

In 2005, with the support of the regional research agency of the state of Minas Gerais 

(FAPEMIG), a project to study the feasibility and cost-benefit of developing a tele-

ECG service was implemented in 82 towns of this state, in Southeast Brazil (6, 7). A 

digital ECG machine able to send ECG tracings to a central hub was provided to 

primary care facilities in those small towns. Cardiologists from 5 University hospitals 

in different parts of the state provided the ECG report which was sent back to the 

computer of the primary health care center. The system proved to be feasible, with 

high utilization rates, and was cost-effective (6, 7). 

The tele-ECG system gave origin to the Telehealth Network of Minas Gerais 

(TNMG), a collaborative network of seven public universities in the state of Minas 

Gerais, Southeast Brazil, coordinated by the University Hospital of Universidade 

Federal de Minas Gerais (8). The TNMG provides telehealth services in several 

different fields of health, as tele-diagnosis (ECG, retinography, among others) and 

teleconsultations (synchronous or asynchronous second opinion in specific cases), 

as well as mHealth and tele-educational activities (8). It has expanded progressively 

to other towns of the state of Minas Gerais and currently covers 814 municipalities in 
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Minas Gerais, mainly in primary health care (PHC) centers, but also in emergency 

departments, ambulances and hospitals. More recently, in 2017, as part of a program 

of the Brazilian Ministry of Health, it also began to provide tele-ECG services for 

other Brazilian states in the Amazonian and northeast regions. Over 4 million tele-

electrocardiogram (ECG) reports and over 124,000 teleconsultations have already 

been performed (as of April 2019), as well as tele-retinography, Holter and tele-

education activities, with quality assured by regular audits. 

The CODE (Clinical Outcomes in Digital Electrocardiography) study is an initiative to 

consolidate and organize the database of digital ECG exams of the TNMG, linking it 

to the public databases of the Mortality and Hospitalization Information Systems. It 

was hoped that the consolidated database would be useful for multiple purposes, 

including the evaluation of epidemiological and prognostic significance of ECG 

findings and the development of new methods of automatic classification of ECG 

abnormalities, using both conventional statistical methods and new machine learning 

techniques. The project was approved by the Research Ethics Committee of the 

Universidade Federal de Minas Gerais. 

Description 

All 12 lead ECGs analyzed in this study were obtained by the TNMG, using a Web 

application built on the Java programming language (6, 8). ECGs were recorded 

using an electrocardiograph manufactured by Tecnologia Eletrônica Brasileira (São 

Paulo, Brazil) – model TEB ECGPC - or Micromed Biotecnologia (Brasilia, Brazil) - 

model ErgoPC 13, from 2010 to 2017. Tracings obtained by these ECG machines 

were sent to central servers by internet, using the web application developed in-

house. The duration of the ECG recordings was between 7 and 10 seconds sampled 

at frequencies ranging from 300 to 1000 Hz, due to specific features of 



 7 

electrocardiograph machines used. All ECGs performed by the TNMG were 

interpreted by a team of trained cardiologists using standardized criteria (9), in order 

to generate an ECG report, which was prepared as free text. ECGs were periodically 

audited to recognize medical errors and discordant interpretations, in order to 

guarantee quality and uniformity of cardiology reports. 

A hierarchical free-text machine learning algorithm was used to recognize specific 

ECG diagnoses among these reports. A list of specific diagnoses was created 

(CODE classes), according to international guidelines (9).  First, the text was 

preprocessed by removing stop-words and generating n-grams. Then, the Lazy 

Associative Classifier (LAC) (10) was used, which was built with a 2800-sample 

dictionary manually created by specialists based on texts from real diagnoses. The 

final report was obtained by inputing the LAC results to a decision tree for class 

disambiguation. The decision tree was trained using the original dataset. The 

classification model was tested on 4557 medical reports evaluated manually, with 

the following macro F1 scores achieved: (1) 1d AV block = 0.729; (2) RBBB = 

0.849; (3) LBBB = 0.838; (4) Sinus Bradycardia = 0.991; (5) AF = 0.993; (6) Sinus 

Tachycardia = 0.974. 

All ECG tracings in the database were also analyzed by the Glasgow 12-lead ECG 

analysis program (release 28.4.1, issued on June 16th 2009), exporting the 

automatic diagnosis, codified by both Glasgow Diagnostic Statements (11) and 

Minnesota codes (12). Correspondences between CODE classes, Glasgow 

Diagnostic Statements and Minnesota codes were mapped. For the CODE 

database, the presence of a specific electrocardiographic diagnosis was considered 

automatically when there was agreement between the diagnosis extracted from the 

cardiologist report and the automatic report from Glasgow Diagnostic Statements or 
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Minnesota code. In cases where there were discordances between medical report 

and one of the automatic programs, a manual revision was done by trained staff. 

The electronic cohort was obtained linking data from the ECG exams (name, sex, 

date of birth, city of residence) and those from the national mortality information 

system, using standard probabilistic linkage methods (FRIL: Fine- grained record 

linkage software, v.2.1.5, Atlanta, GA). After the linkage, the data was anonymized 

for storage. 

The data is stored in a PostgreSQL database with the most important fields for 

analysis being: patient, exam data, ECG exam tracing, lead signals, text report, 

CODE study diagnosis, Glasgow Diagnostic Statements, Minnesota code classes 

and data from the death declaration. Table 1 describes some of the attributes 

available in the most important tables. 

Table 1 – Main variables and data stored in the CODE dataset 

Patient Patient ID, sex, age, address, town  

Clinical History Comorbidities and drugs in use (self-reported) 

Exam Exam ID, date, health care center 

Exam tracing Tracing number, heart rate, muscle filter, speed, 
sampling rate, sensitivity 

Lead signal register number, 12 lead signal 

ECG measurements P duration, P frontal axis, PR interval, QRS duration, 
QRS  frontal axis, QT interval, T  duration 

Text report Cardiologist report 

Minnesota code class Minnesota code and description 

Glasgow Diagnostic 
Statements 

Glasgow Diagnostic Statement codes and description 

CODE class CODE ECG diagnosis  

Mortality data Date, place (town) and cause of death (ICD-10)   
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Clinical role 

From a dataset of 2,470,424 ECGs, 1,773,689 patients were identified. After 

excluding the ECGs with technical problems and patients under 16 years old, a total 

of 1,558,415 patients were included for analyses. The mean age was 51.6 [SD17.6] 

years with 40.2% male (Table 2). The overall mortality rate was 3.34% in a mean 

follow-up of 3.7 years. The resultant dataset has several potential applications, both 

for technical and clinical-epidemiological studies. Two studies already presented in 

congresses (16, 17) are highlighted.   

 

 n % 

Comorbidities 

Diabetes 101,470 6.51 

COPD 11,266 0.72 

Chagas disease 34,590 2.22 

Dyslipidemia 60,590 3.89 

MI 11,604 0.74 

Hypertension 492,637 31.61 

Smoke 108,814 6.98 

ECG Abnormalities 

AF 20,782 1.33 

1dAVb 20,848 1.34 

LBBB 20,610 1.32 

RBBB 37,413 2.40 

SB 24,565 1,58 

ST 34,369 2,21 

WPW 1,093 0.07 
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Table 2: Prevalence of comorbidities and ECG abnormalities from a total of 1,558,415 patients. 

COPD, chronic obstructive pulmonary disease; MI, myocardial infarction; AF, Atrial fibrillation; 1dAVb,  

first degree Atrioventricular block; LBBB, left bundle branch block; RBBB, right bundle branch block;  

WPW, Wolff-Parkinson-White; SB, sinus bradycardia; ST, sinus tachycardia. 

Example 1:  Training of Deep Neural Networks for Automatic ECG diagnosis 

There is a lot of excitement about how machine learning, and more specifically, deep 

neural networks (DNNs) might improve health care and clinical practice.(5, 13) DNN 

models can benefit from having large datasets and produce high accuracy models 

(13). This has allowed these models to achieve striking success in tasks such as 

image classification (14) and speech recognition (15). Our dataset has been used to 

train a DNN to automatically detect 6 types of ECG abnormalities - right and left 

bundle branch block (RBBB and LBBB), 1st degree AV block (1dAVb), atrial 

fibrillation (AF), sinus tachycardia and bradycardia (ST and SB) - which were 

considered representative of both rhythmic and morphologic ECG abnormalities (16). 

We used a convolutional neural network similar to the residual network (17), but 

adapted to unidimensional signals. We have adopted the modification in the 

residualblock proposed in (18). The network consists of a convolutional layer 

followed by four residual blocks with two convolutional layers per block. The 

convolutional layers have filter length 16, starting with 4096 samples, and 64 filters 

for the first layer and residual block and increasing the number of filters by 64 every 

second residual block and subsampling by a factor of 4 every residual block.   

We compared the performance with cardiology and emergency resident medical 

doctors as well as medical students and, considering the F1 score, the DNN matches 

or outperforms the medical residents and students for all abnormalities (see Table 3). 

These results indicate that end-to-end automatic ECG analysis based on DNNs, 

previously used only in a single-lead setup (19), generalizes well to the 12-lead ECG. 
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This is an important result in that it takes this technology much closer to standard 

clinical practice. 

 

 

Precision (PPV) Recall (Sensitivity) Specificity F1 score 

DNN cardio. emerg. stud. DNN cardio. emerg. stud. DNN cardio. emerg. stud. DNN cardio. emerg. stud. 

1dAVb 0.893 0.905 0.639 0.605 0.893 0.679 0.821 0.929 0.996 0.997 0.984 0.979 0.893 0.776 0.719 0.732 

RBBB 0.872 0.868 0.963 0.914 1.000 0.971 0.765 0.941 0.994 0.994 0.999 0.996 0.932 0.917 0.852 0.928 

LBBB 0.968 1.000 0.963 0.931 1.000 0.900 0.867 0.900 0.999 1.000 0.999 0.997 0.984 0.947 0.912 0.915 

SB 0.833 0.833 0.824 0.750 0.938 0.938 0.875 0.750 0.996 0.996 0.996 0.995 0.882 0.882 0.848 0.750 

AF 0.800 0.769 0.800 0.571 0.923 0.769 0.615 0.923 0.996 0.996 0.998 0.989 0.857 0.769 0.696 0.706 

ST 0.897 0.968 0.919 0.882 0.972 0.833 0.944 0.833 0.995 0.999 0.996 0.995 0.933 0.896 0.932 0.857 

Table 3: Performance of the DNN for detecting 6 types of abnormalities.  Scores of the DNN are 

compared with the average performance of:  i) 4th year cardiology resident(cardio.);  ii) 3rd year 

emergency resident (emerg.); and, iii) 5th year medical students (stud.). (PPV = positive predictive 

value). The gold standard was a consensus of 3 certified cardiologists. 

 

Example 2:  Evaluation of the prognosis of atrial fibrillation 

By using the large cohort of the CODE study, the risk of mortality in men and women 

with AF was evaluated in a preliminary report (20). Only the first ECG of each patient 

was considered. Patients under 16 years were excluded. Hazard ratios (HR) for 

mortality were adjusted for demographic and self-reported clinical factors and 

estimated with Cox regression. AF was an independent risk factor for all-cause 

mortality (HR 2.10, 95%CI 2.03-2.17) and cardiovascular mortality (HR 2.03, 95%CI 

1.81-2.27). In multivariable analysis by sex, adjusted for age and comorbidities, 

women with AF had a higher risk of death for all causes (HR 2.59, 95% CI 2.47–2.73) 

than men with AF (HR 1.83, 95% CI 1.74–1.91). It was concluded that AF was a 

strong predictor of cardiovascular and all-cause mortality in a primary care 

population, with increased risk in women. 
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Limitations  

Data storage and database structural changes over time 

Although the TNMG has been in service since 2006, it was only possible to recover 

tracings obtained after 2010. ECGs acquired before 2010 were stored in proprietary 

format (.EWC) or as images (.JPG) by the ECG system used at that time. The 

analysis of these older tracings would be very useful to evaluate the long-term 

prognostic meaning ECG abnormalities observed in the first ECG.  

Noise and absence of signal  

Approximately 2.5% of the exams had low quality ECG signals and were classified as 

unsatisfactory for medical reporting and excluded of the preliminary analysis showed 

in this article. To recognize those low quality tracings, an algorithm to evaluate the 

quality of the ECG tracing was developed, to be used in the future analysis. It 

calculates the signal-to-noise ratio of the ECG tracing (21), and classifies the exam 

as reportable or non-reportable, due to either overall poor signal quality or absence 

of signal. 

Labelling issues  

Labelling all types of ECG abnormalities in the whole dataset has been challenging. 

Both the automatic coding using the software of the University of Glasgow and the 

medical diagnosis, extracted through natural language process (9), are imperfect. 

Thus, a large number of tracings had to be reviewed manually by medical students, 

under the supervision of an experienced cardiologist. This process was possible to 

be done in the first phase of the study, in which studied ECG abnormalities had 
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prevalence of less than 3%. More common ECG findings, such as non-specific 

alterations in ventricular repolarization and left atrial abnormality, will be difficult to 

classify in the whole dataset using this same procedure and new approaches are 

needed.  

Future Work 

The current dataset opens up several possibilities for future work. We are currently 

proceeding on an extended version of the CODE dataset, to include patients with 

ECGs recorded from 2006 to 2010 and after 2017, as well as on further linkage to the 

hospitalization database of the public health system (Sistema de Informações 

Hospitalares – SIM). It would allow not only the prediction of the risk of death, but 

also of relevant medical procedures, such as pacemaker implantation and cardiac 

revascularization.  

From May 2018 on, all exams have been analyzed using a new reading 

software, with several new tools to facilitate the work of the cardiologist. One of these 

new features is that the cardiologist should choose which ECG classes he/she 

considered are adequate to the diagnosis for a specific exam, among a list of ECG 

CODE classes, as listed below, instead of using free text, as in the past. Thus, in 

more than 600,000 exams reported since then, we have the class of diagnosis 

annotated directly from the specialist, without using natural language processing or 

the heuristic rules we used for annotation of the dataset since now. We will use this 

more easily and precisely annotated dataset to apply the deep learning for 

classification of the full list of ECG abnormalities. This could, in the future, provide a 

new technology to be used in automatic classification of 12-lead ECG tracings that 

could be integrated in the telehealth system or even embedded in ECG machines 
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This tested and accurate algorithm for classification of all classes of ECG 

abnormalities could be used to complete labelling of the whole dataset, a challenge 

we described in the limitations chapter. A larger dataset, from 2006 on, linked to the 

hospitalization and mortality date, would allow the development of new prognostic 

studies on the risk of specific ECG abnormalities in this cohort highly representative 

of the general population, as well as new risk scores. New ECG indexes can be 

generated also with the application of machine learning methods to recognize those 

with higher risk of death, or appearance of new ECG abnormalities, as incident atrial 

fibrillation and bundle branch block.  

Further studies can also include the use of methods developed for recognition of 

established markers of cardiovascular risk, such as left ventricular systolic 

dysfunction (22), allowing recognition of those subjects whose ECG suggested that 

they could benefit from having an echocardiogram recorded. This routine, if proved 

effective, could be implemented in the telehealth network and improve the ability of 

the health system to use resources more cost effectively, especially in resource-

constrained regions. 

 

Conclusion 

Electrocardiography is now well over a 100-year-old method, with an established role 

in the care of patients with documented or suspected cardiovascular diseases. The 

availability of large databases, linked to other clinical and vital information, as well as 

new methods of analysis can further increase our knowledge in the role of 

electrocardiography in clinical practice and open new applications of its use. Thus, 

the CODE dataset, which is a large database that comprises all ECGs performed by 
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a large telehealth network, can be useful for further developments in the field of 

digital electrocardiography, clinical cardiology and cardiovascular epidemiology. 
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