6 research outputs found

    Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space

    Get PDF
    The NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL; https://anvilproject.org) was developed to address a widespread community need for a unified computing environment for genomics data storage, management, and analysis. In this perspective, we present AnVIL, describe its ecosystem and interoperability with other platforms, and highlight how this platform and associated initiatives contribute to improved genomic data sharing efforts. The AnVIL is a federated cloud platform designed to manage and store genomics and related data, enable population-scale analysis, and facilitate collaboration through the sharing of data, code, and analysis results. By inverting the traditional model of data sharing, the AnVIL eliminates the need for data movement while also adding security measures for active threat detection and monitoring and provides scalable, shared computing resources for any researcher. We describe the core data management and analysis components of the AnVIL, which currently consists of Terra, Gen3, Galaxy, RStudio/Bioconductor, Dockstore, and Jupyter, and describe several flagship genomics datasets available within the AnVIL. We continue to extend and innovate the AnVIL ecosystem by implementing new capabilities, including mechanisms for interoperability and responsible data sharing, while streamlining access management. The AnVIL opens many new opportunities for analysis, collaboration, and data sharing that are needed to drive research and to make discoveries through the joint analysis of hundreds of thousands to millions of genomes along with associated clinical and molecular data types

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society

    Humanity and Space

    Get PDF
    Space exploration is motivated by our desire to ensure the survival of the human species and commercial enterprises. To avoid extinction and maintain quality of life of the human species, humanity has to experiment with colonization and manipulation of our Solar System. Commercial enterprise includes technological advancements, communications, and new sources of energy available throughout the Solar System and to the benefit of humanity. This project explores all of these possibilities, provides guidelines, and a vision for the future

    International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated module

    No full text
    •We report INICC device-associated module data of 50 countries from 2010-2015.•We collected prospective data from 861,284 patients in 703 ICUs for 3,506,562 days.•DA-HAI rates and bacterial resistance were higher in the INICC ICUs than in CDC-NHSN's.•Device utilization ratio in the INICC ICUs was similar to CDC-NHSN's. Background: We report the results of International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2010-December 2015 in 703 intensive care units (ICUs) in Latin America, Europe, Eastern Mediterranean, Southeast Asia, and Western Pacific. Methods: During the 6-year study period, using Centers for Disease Control and Prevention National Healthcare Safety Network (CDC-NHSN) definitions for device-associated health care-associated infection (DA-HAI), we collected prospective data from 861,284 patients hospitalized in INICC hospital ICUs for an aggregate of 3,506,562 days. Results: Although device use in INICC ICUs was similar to that reported from CDC-NHSN ICUs, DA-HAI rates were higher in the INICC ICUs: in the INICC medical-surgical ICUs, the pooled rate of central line-associated bloodstream infection, 4.1 per 1,000 central line-days, was nearly 5-fold higher than the 0.8 per 1,000 central line-days reported from comparable US ICUs, the overall rate of ventilator-associated pneumonia was also higher, 13.1 versus 0.9 per 1,000 ventilator-days, as was the rate of catheter-associated urinary tract infection, 5.07 versus 1.7 per 1,000 catheter-days. From blood cultures samples, frequencies of resistance of Pseudomonas isolates to amikacin (29.87% vs 10%) and to imipenem (44.3% vs 26.1%), and of Klebsiella pneumoniae isolates to ceftazidime (73.2% vs 28.8%) and to imipenem (43.27% vs 12.8%) were also higher in the INICC ICUs compared with CDC-NHSN ICUs. Conclusions: Although DA-HAIs in INICC ICU patients continue to be higher than the rates reported in CDC-NSHN ICUs representing the developed world, we have observed a significant trend toward the reduction of DA-HAI rates in INICC ICUs as shown in each international report. It is INICC's main goal to continue facilitating education, training, and basic and cost-effective tools and resources, such as standardized forms and an online platform, to tackle this problem effectively and systematically

    COVID-19 due to the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: a prospective observational cohort study

    Get PDF
    The Delta (B.1.617.2) variant was the predominant UK circulating SARS-CoV-2 strain between May and December 2021. How Delta infection compares with previous variants is unknown. This prospective observational cohort study assessed symptomatic adults participating in the app-based COVID Symptom Study who tested positive for SARS-CoV-2 from May 26 to July 1, 2021 (Delta overwhelmingly the predominant circulating UK variant), compared (1:1, age- and sex-matched) with individuals presenting from December 28, 2020 to May 6, 2021 (Alpha (B.1.1.7) the predominant variant). We assessed illness (symptoms, duration, presentation to hospital) during Alpha- and Delta-predominant timeframes; and transmission, reinfection, and vaccine effectiveness during the Delta-predominant period. 3581 individuals (aged 18 to 100 years) from each timeframe were assessed. The seven most frequent symptoms were common to both variants. Within the first 28 days of illness, some symptoms were more common with Delta versus Alpha infection (including fever, sore throat, and headache) and some vice versa (dyspnoea). Symptom burden in the first week was higher with Delta versus Alpha infection; however, the odds of any given symptom lasting ≥ 7 days was either lower or unchanged. Illness duration ≥ 28 days was lower with Delta versus Alpha infection, though unchanged in unvaccinated individuals. Hospitalisation for COVID-19 was unchanged. The Delta variant appeared more (1.49) transmissible than Alpha. Re-infections were low in all UK regions. Vaccination markedly reduced the risk of Delta infection (by 69-84%). We conclude that COVID-19 from Delta or Alpha infections is similar. The Delta variant is more transmissible than Alpha; however, current vaccines showed good efficacy against disease. This research framework can be useful for future comparisons with new emerging variants
    corecore