17 research outputs found
Sampling Low Air Pollution Concentrations at a Neighborhood Scale in a Desert U.S. Metropolis with Volatile Weather Patterns
Background: Neighborhood-scale air pollution sampling methods have been used in a range of settings but not in low air pollution airsheds with extreme weather events such as volatile precipitation patterns and extreme summer heat and aridity—all of which will become increasingly common with climate change. The desert U.S. metropolis of Tucson, AZ, has historically low air pollution and a climate marked by volatile weather, presenting a unique opportunity. Methods: We adapted neighborhood-scale air pollution sampling methods to measure ambient NO2, NOx, and PM2.5 and PM10 in Tucson, AZ. Results: The air pollution concentrations in this location were well below regulatory guidelines and those of other locations using the same methods. While NO2 and NOx were reliably measured, PM2.5 measurements were moderately correlated with those from a collocated reference monitor (r = 0.41, p = 0.13), potentially because of a combination of differences in inlet heights, oversampling of acutely high PM2.5 events, and/or pump operation beyond temperature specifications. Conclusion: As the climate changes, sampling methods should be reevaluated for accuracy and precision, especially those that do not operate continuously. This is even more critical for low-pollution airsheds, as studies on low air pollution concentrations will help determine how such ambient exposures relate to health outcomes. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Analysis of interspecific competition in perennial plants using Life Table Response Experiments
The impact of interspecific competition is usually measured by its effect upon plant growth, neglecting impacts upon other stages of the life cycle such as fecundity which have a direct influence upon individual fitness and the asymptotic population growth rate of a population . We used parameterized matrix models for three perennial plant species grown with and without interspecific competition to illustrate how the methodology of Life Table Response Experiments LTRE can be used to link any change in population dynamics to changes in any part of the life cycle. Plants were herbaceous grassland species grown for two years in a field experiment at Rothamsted Experimental Station, England. Interspecific competition reduced by over 90 % in all species. Survival and growth were slightly affected by competition whereas plant fecundity was greatly reduced. Nearly all of the ob-served difference in between the competition treatments was explained by the fecundity terms, and more pre-cisely by a large difference in the number of seeds, and a high sensitivity of to the germination rate. Whereas most competition studies focus on the measurement of change in individual fitness, our study illustrates how informative it is to take account not only of the effect of competition upon vital rates but also of how different vital rates affect population growth rate