111 research outputs found

    Expression profiles of acute lymphoblastic and myeloblastic leukemias with ALL-1 rearrangements

    Get PDF
    The ALL-1 gene is directly involved in 5-10% of ALLs and AMLs by fusion to other genes or through internal rearrangements. DNA microarrays were utilized to determine expression profiles of ALLs and AMLs with ALL-1 rearrangements. These profiles distinguish those tumors from other ALLs and AMLs. The expression patterns of ALL-1-associated tumors, in particular ALLs, involve oncogenes, tumor suppressors, anti apoptotic genes, drug resistance genes etc., and correlate with the aggressive nature of the tumors. The genes whose expression differentiates between ALLs with and without ALL-1 rearrangement were further divided into several groups enabling separation of ALL-1- associated ALLs into two subclasses. Further, AMLs with partial duplication of ALL-1 vary in their expression pattern from AMLs in which ALL-1 had undergone fusion to other genes. The extensive analysis described here draws attention to genes which might have a direct role in pathogenesis

    Methodological approaches in application of synthetic lethality screening towards anticancer therapy

    Get PDF
    A promising direction in the development of selective less toxic cancer drugs is the usage of synthetic lethality concept. The availability of large-scale synthetic low-molecular-weight chemical libraries has allowed HTS for compounds synergistic lethal with defined human cancer aberrations in activated oncogenes or tumour suppressor genes. The search for synthetic lethal chemicals in human/mouse tumour cells is greatly aided by a prior knowledge of relevant signalling and DNA repair pathways, allowing for educated guesses on the preferred potential therapeutic targets. The recent generation of human/rodents genome-wide siRNAs, and shRNA-expressing libraries, should further advance this more focused approach to cancer drug discovery

    A new member of the CAB gene family: structure, expression and chromosomal location of Cab -8, the tomato gene encoding the Type III chlorophyll a/b-binding polypeptide of photosystem I

    Full text link
    We have previously reported the isolation and characterization of tomato nuclear genes encoding two types of chlorophyll a/b-binding (CAB) polypeptides localized in photosystem (PS) I and two types of CAB polypeptides localized in PSII. Sequence comparisons shows that all these genes are related to each other and thus belong to a single gene family. Here we report the isolation and characterization of an additional member of the tomato CAB gene family, the single tomato nuclear gene, designated Cab -8, which encodes a third type of CAB polypeptide localized in PSI. The protein encoded by Cab -8 is 65% and 60% divergent from the PSI Type I and Type II CAB polypeptides, respectively. The latter two are 65% divergent from each other. Only some short regions of the polypeptides are strongly conserved. The Cab -8 locus maps to chromosome 10, 9 map units from Cab -7, the gene encoding the Type II PSI CAB polypeptide. The Cab -8 gene contains two introns; the first intron matches in position the single intron in the Type II PSII CAB genes and the second intron matches in position the second intron in the Type II PSI CAB gene. Like other CAB genes, Cab -8 is light-regulated and is highly expressed in the leaf and to a lesser extent in other green organs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43422/1/11103_2004_Article_BF00043203.pd
    • …
    corecore