4,612 research outputs found
To beta block or not to beta block; that is the question
The fast-acting β-1 blocker esmolol has been the center of attention since the landmark article by Morrelli and colleagues suggesting that, in patients with sepsis, reducing heart rate by administering esmolol can result in a survival benefit. However, the use of esmolol for the treatment of sepsis and the underlying mechanism responsible for this benefit remain controversial. This commentary discusses the study by Jacquet-Lagrèze and colleagues, who in a pig model of sepsis tested the hypothesis that administration of esmolol to reduce heart rate may correct sepsis-induced sublingual and gut microcirculatory alterations which are known to be associated with adverse outcome
Methods for linear optical quantum Fredkin gate
We consider the realization of quantum Fredkin gate with only linear optics
and single photons. First we construct a heralded Fredkin gate using four
heralded controlled-not (CNOT) gates. Then we simplify this method to a
post-selected one utilizing only two CNOT gates. We also give a possible
realization of this method which is feasible with current experimental
technology. Another post-selected scheme requires time entanglement of the
input photons but needs no ancillary photons.Comment: 5 pages, 5 figure
Generation of a High-Visibility Four-Photon Entangled State and Realization of a Four-Party Quantum Communication Complexity Scenario
We obtain a four-photon polarization-entangled state with a visibility as
high as (95.35\pm 0.45)% directly from a single down-conversion source. A
success probability of (81.54\pm 1.38)% is observed by applying this entangled
state to realize a four-party quantum communication complexity scenario (QCCS),
which comfortably surpass the classical limit of 50%. As a comparison, two
Einstein-Podolsky-Rosen (EPR) pairs are shown to implement the scenario with a
success probability of (73.89\pm 1.33)%. This four-photon state can be used to
fulfill decoherence-free quantum information processing and other advanced
quantum communication schemes.Comment: REVTEX 4.0, 4 pages, 4 figures, 1 tabl
An expert system for the diagnosis of vehicle malfunctions.
http://archive.org/details/expertsystemford00seleNAN
Local Operations in qubit arrays via global but periodic Manipulation
We provide a scheme for quantum computation in lattice systems via global but
periodic manipulation, in which only effective periodic magnetic fields and
global nearest neighbor interaction are required. All operations in our scheme
are attainable in optical lattice or solid state systems. We also investigate
universal quantum operations and quantum simulation in 2 dimensional lattice.
We find global manipulations are superior in simulating some nontrivial many
body Hamiltonians.Comment: 5 pages, 2 figures, to appear in Phys. Rev.
A new record of Percursaria percursa (Ulvaceae, Ulvales) on the North Island, New Zealand
The filamentous green alga Percursaria percursa (Ulvaceae, Ulvales) was recorded for the first time on the North Island of New Zealand at mokoroa Estuary, Tauranga Harbour. This species is previously known within New Zealand from only two records, both from the South Island. In Tauranga Harbour, this species was restricted to anoxic estuarine sediments where mangrove forests had been mulched, and mulchate left in situ. Percursaria percursa was found intertwined with Ulva spp. and Rhizoclonium spp. Surveys of other North and South Island estuaries suggest that this alga, although occurring as part of nuisance green algal blooms in Tauranga Harbour, has only colonized human-impacted locations, and has not yet been observed in natural' estuarine ecosystems in New Zealand. As this species was found intertwined with other mat-forming filamentous green algae, it can easily be misidentified in the field, leading to both over- and under-reporting of species occurrence
Nonclassicality of quantum excitation of classical coherent field in photon loss channel
We investigate the nonclassicality of photon-added coherent states in the
photon loss channel by exploring the entanglement potential and negative Wigner
distribution. The total negative probability defined by the absolute value of
the integral of the Wigner function over the negative distribution region
reduces with the increase of decay time. The total negative probability and the
entanglement potential of pure photon-added coherent states exhibit the similar
dependence on the beam intensity. The reduce of the total negative probability
is consistent with the behavior of entanglement potential for the dissipative
single-photon-added coherent state at short decay times.Comment: 5 pages, 5 figures, RevTex4, submitte
Nonlocal Gate Of Quantum Network Via Cavity Quantum Electrodynamics
We propose an experimentally feasible scheme to realize the nonlocal gate
between two different quantum network nodes. With an entanglement-qubit (ebit)
acts as a quantum channel, our scheme is resistive to actual environment noise
and can get high fidelity in current cavity quantum electrodynamics (C-QED)
system.Comment: 5 pages, 3 figures, 1 tabl
- …