23 research outputs found

    Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles

    Get PDF
    Purpose Mechanical interactions between muscles have been shown for in situ conditions. In vivo data for humans is unavailable. Global and local length changes of calf muscles were studied to test the hypothesis that local strains may occur also within muscle for which global strain equals zero. Methods For determination of globally induced strain in m. gastrocnemius in dissected human cadavers several knee joint angles were imposed, while keeping ankle joint angle constant and measuring its muscle-tendon complex length changes. In vivo local strains in both gastrocnemius and soleus muscles were calculated using MRI techniques in healthy human volunteers comparing images taken at static knee angles of 173° and 150°. Results Imposed global strains on gastrocnemius were much smaller than local strains. High distributions of strains were encountered, e.g. overall lengthened muscle contains locally lengthened, as well as shortened areas within it. Substantial strains were not limited to gastrocnemius, but were found also in synergistic soleus muscle, despite the latter muscle-tendon complex length remaining isometric (constant ankle angle: i.e. global strain = 0), as it does not cross the knee. Based on results of animal experiments this effect is ascribed to myofascial connections between these synergistic muscles. The most likely pathway is the neurovascular tract within the anterior crural compartment (i.e. the collagen reinforcements of blood vessels, lymphatics and nerves). However, direct intermuscular transmission of force may also occur via the perimysium shared between the two muscles. Conclusions Global strains imposed on muscle (joint movement) are not good estimators of in vivo local strains within it: differing in magnitude, as well as direction of length change. Substantial mechanical interaction occurs between calf muscles, which is mediated by myofascial force transmission between these synergistic muscles. This confirms conclusions of previous in situ studies in experimental animals and human patients, for in vivo conditions in healthy human subjects. © 2011 Springer-Verlag

    Extramuscular myofascial force transmission alters substantially the acute effects of surgical aponeurotomy: assessment by finite element modeling

    Get PDF
    Effects of extramuscular myofascial force transmission on the acute effects of aponeurotomy were studied using finite element modeling and implications of such effects on surgery were discussed. Aponeurotomized EDL muscle of the rat was modeled in two conditions: (1) fully isolated (2) with intact extramuscular connections. The specific goal was to assess the alterations in muscle length-force characteristics in relation to sarcomere length distributions and to investigate how the mechanical mechanism of the intervention is affected if the muscle is not isolated. Major effects of extramuscular myofascial force transmission were shown on muscle length-force characteristics. In contrast to the identical proximal and distal forces of the aponeurotomized isolated muscle, substantial proximo-distal force differences were shown for aponeurotomized muscle with extramuscular connections (for all muscle lengths F dist > F prox after distal muscle lengthening). Proximal optimal length did not change whereas distal optimal length was lower (by 0.5 mm). The optimal forces of the aponeurotomized muscle with extramuscular connections exerted at both proximal and distal tendons were lower than that of isolated muscle (by 15 and 7%, respectively). The length of the gap separating the two cut ends of the intervened aponeurosis decreases substantially due to extramuscular myofascial force transmission. The amplitude of the difference in gap length was muscle length dependent (maximally 11.6% of the gap length of the extramuscularly connected muscle). Extramuscular myofascial force transmission has substantial effects on distributions of lengths of sarcomeres within the muscle fiber populations distal and proximal to the location of intervention: (a) Within the distal population, the substantial sarcomere shortening at the proximal ends of muscle fibers due to the intervention remained unaffected however, extramuscular myofascial force transmission caused a more pronounced serial distribution towards the distal ends of muscle fibers. (b) In contrast, extramuscular myofascial force transmission limits the serial distribution of sarcomere lengths shown for the aponeurotomized isolated muscle in the proximal population. Fiber stress distributions showed that extramuscular myofascial force transmission causes most sarcomeres within the aponeurotomized muscle to attain lengths favorable for higher force exertion. It is concluded that acute effects of aponeurotomy on muscular mechanics are affected greatly by extramuscular myofascial force transmission. Such effects have important implications for the outcome of surgery performed to improve impeded function since muscle in vivo is not isolated both anatomically and mechanically

    Biochemical, biomechanical and imaging biomarkers of ischemic stroke:Time for integrative thinking

    Get PDF
    Stroke is one of the leading causes of adult disability affecting millions of people worldwide. Post-stroke cognitive and motor impairments diminish quality of life and functional independence. There is an increased risk of having a second stroke and developing secondary conditions with long-term social and economic impacts. With increasing number of stroke incidents, shortage of medical professionals and limited budgets, health services are struggling to provide a care that can break the vicious cycle of stroke. Effective post-stroke recovery hinges on holistic, integrative and personalized care starting from improved diagnosis and treatment in clinics to continuous rehabilitation and support in the community. To improve stroke care pathways, there have been growing efforts in discovering biomarkers that can provide valuable insights into the neural, physiological and biomechanical consequences of stroke and how patients respond to new interventions. In this review paper, we aim to summarize recent biomarker discovery research focusing on three modalities (brain imaging, blood sampling and gait assessments), look at some established and forthcoming biomarkers, and discuss their usefulness and complementarity within the context of comprehensive stroke care. We also emphasize the importance of biomarker guided personalized interventions to enhance stroke treatment and post-stroke recovery.</p

    Assessment by Finite Element Modeling Indicates That Surgical Intramuscular Aponeurotomy Performed Closer to the Tendon Enhances Intended Acute Effects in Extramuscularly Connected Muscle\ud

    Get PDF
    The effects of location of aponeurotomy on the muscular mechanics of extramuscularly connected muscle were assessed. Using finite element modeling, extensor digitorum longus muscle of the rat was studied for the effects of aponeurotomy performed in each of three locations on the proximal aponeurosis: (1) a proximal location (case P), (2) an intermediate location (case I), and (3) a distal location (case D). Proximo-distal force differences were more pronounced for more proximal aponeurotomy. The location also affected proximally and distally assessed muscle length-force characteristics: (1) Muscle optimum length and active slack length shifted differentially to higher lengths, increasing slack to optimum length range (for D to P: distally by 15–44%; proximally by 2–6%). (2) Muscle forces decreased at all lengths (e.g., for D to P distal optimal force=88–68% and proximal optimal force=87–60% of intact values, respectively). Increased length range and force decreases were highest for case P, as were effects on muscle geometry: gap length within the proximal aponeurosis; decreased proximal fiber population pennation angle. Parallel, but not serial, heterogeneity of sarcomere length was highest in case P: (a) For the distal fiber population, sarcomere shortening was highest; (b) for the proximal population, sarcomeres were longer. It is concluded that if aponeurotomy is performed closer to the tendon, intended surgical effects are more pronounced. For bi-articular muscle, mechanics of both proximal and distal joints will be affected, which should be considered in selecting the location of aponeurotomy for optimal results at both joint

    Effects of back loading on the biomechanics of sit-to-stand motion in healthy children

    No full text
    The goal of the present study was to determine the thus far unstudied effects of back loading on the kinematics and kinetics of sit-to-stand (STS) motion in healthy children. Fifteen children (8 boys, 7 girls, mean age 9.6 years, SD 1.2 years) were tested with no back load and with a back load of 10% and 20% of body weight, respectively. A motion analysis system was used with six infrared cameras and two force plates. Total STS duration did not change; however, differential effects were shown for the durations of its phases. Back loading increased ankle dorsiflexion yielding a greater maximal dorsiflexion angle. Effects on the knee angle were limited except for a significant decrease in final knee flexion. Initial and maximal hip flexion increased but final hip angle did not change. Initial backward pelvic tilt decreased and a shift to forward pelvic tilt occurred at an earlier stage of STS motion. Back loading affected trunk motion: maximal and final forward shoulder tilt increased. Maximal ankle and knee moments and powers increased; however, hip joint kinetics was not affected significantly. Therefore, while maintaining the general pattern of STS motion, participants showed selectively significant adjustments to back loading during its different phases. The main kinematic adjustments were increased trunk flexion and greater ankle dorsiflexion, while the major kinetic adjustment was increased knee extension moment. Increased back loading yielded more pronounced effects, primarily in the ankle. In sum, back loading substantially affected the biomechanics of STS motion even for the lower load level studied. This finding may be of clinical relevance for musculoskeletal disorders, but this needs to be examined. (C) 2007 Elsevier B.V. All rights reserved
    corecore