11 research outputs found

    Cytotoxic and Antimicrobial Activities of Quinones Isolated from Different Organism

    Get PDF
    Cancer is a group of related diseases in which there is uncontrolled cell growth that spreads to the surrounding tissues and damages them. Cancer remains the disease with the leading cause of death worldwide, and incidence and mortality are increasing rapidly. The main cancer treatment is chemotherapy; however, the compounds used in this treatment have serious side effects for this reason, is necessary to develop new therapeutic strategies. Natural products are an excellent pharmacological alternative for the treatment of cancer and infections. In search of new compounds with cytotoxic and antimicrobial activity, we have found quinones that have a high pharmacological potency in the treatment of these health problems. Quinones are an aromatic system of one or diketone and are mainly isolated from plants, fungi, bacteria, and other organisms. These compounds are secondary metabolites derived from the oxidation of hydroquinones; they include benzoquinones, naphthoquinones, anthraquinones, and polyquinones. This review summarizes the activity of 152 anticancer and 30 antimicrobial quinones

    Terpenes from Natural Products with Potential Anti-Inflammatory Activity

    Get PDF
    The development and progression of many diseases is related with an inflammatory process, which could affect different organs or tissues. Currently, many drugs are used to treat inflammation. However, some of these compounds induce severe side effects. For this reason, the search of new therapeutic options for the treatment of inflammation is very desirable. Medicinal plants have been an interesting source for obtaining new active compounds, including several terpenes and terpenoids with anti-inflammatory activity. This book chapter includes 62 sesquiterpenes, 34 diterpenes, and 22 triterpenes with anti-inflammatory activity. The anti-inflammatory effect was evaluated using in vitro, in vivo, and both models. These terpenes were obtained from 44 plant species belonging to 25 botanical families. Eight of theses species belong to the Asteraceae family and four to Lamiaceae family, respectively, and the other species belong to 13 different botanical families, one sesquiterpene was obtained from a sponge and two diterpenes were isolated from corals

    Cytotoxicity and Antitumor Action of Lignans and Neolignans

    No full text
    Lignans and neolignans are plant’s secondary metabolites, widely distributed in the plant kingdom, and have been identified in more than 70 plant families. These compounds are mainly localized in lignified tissues, seeds, and roots. Lignans and neolignans present a great variety of biological activities, such as antioxidant, anti-inflammatory, antineurodegenerative, antiviral, antimicrobial, and antitumor. By 2040, it is estimated that the number of new cancer cases per year will rise to 29.5 million; therefore, the development of new anticancer agents and adjuvants is essential. Lignans and neolignans have also indicated a reduction in the risk of cancer at different stages. The objective of this review is to search and analyze the cytotoxic and antitumor activity of lignans and neolignans that can be an important source of new antitumor drugs. We have made a comprehensive summary of 113 lignans and neolignans, obtained from 44 plants and divided between 34 families, which demonstrated cytotoxic activity in several human cancer cell lines evaluated through various in vitro studies and other in vivo models, by inducing mitochondrial apoptosis and cell cycle arrest, inhibiting NF-κβ activity and activation of metalloproteinases (MMPs), among other processes. Overall, 13 compounds, methoxypinoresinol, arctigenin, trachelogenin, 4-O-methylhonokiol, honokiol, bifidenone, (−)-trachelogeninit, deoxypodophyllotoxin, matairesinol, bejolghotin G, H, and I, and hedyotol-B, showed the best anticancer activity

    Anti-Inflammatory Activity of Piquerol Isolated from Piqueria trinervia Cav.

    No full text
    Background: Inflammation is a complex process as a response to several stimuli, such as infection, a chemical irritant, and the attack of a foreign body. Piquerol was isolated from Piqueria trinervia, and its anti-inflammatory activity was evaluated using in vivo and in vitro models. Methods: Piquerol is a monoterpene that was identified using NMR, FT-IR spectroscopy, and mass spectrometry analysis. The anti-inflammatory activity was tested in vivo in ear edema induced with TPA in mice. Piquerol was also tested on J774A.1 macrophages stimulated with lipopolysaccharide (LPS), and the levels of NO, NF-κB, TNF-α, IL-1β, IL-6, and IL-10 were determined using ELISA. Results: The results show that piquerol diminished ear edema (66.19%). At 150.51 µM, it also inhibited the levels of NO (31.7%), TNF-α (49.8%), IL-1β (69.9%), IL-6 (47.5%), and NF-κB (26.7%), and increased the production of IL-10 (62.3%). Piquerol has a membrane stabilization property in erythrocyte, and at 100 µg/mL, the membrane protection was of 86.17%. Conclusions: Piquerol has anti-inflammatory activity, and its possible mechanism of action is through the inhibition of pro-inflammatory mediators. This compound could be a candidate in the development of new drugs to treat inflammatory problems

    Anti-Inflammatory and Cytotoxic Compounds Isolated from Plants of <i>Euphorbia</i> Genus

    No full text
    Euphorbia is a large genus of the Euphorbiaceae family. Around 250 species of the Euphorbia genus have been studied chemically and pharmacologically; different compounds have been isolated from these species, especially diterpenes and triterpenes. Several reports show that several species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as abietanes, ingenanes, and lathyranes. In addition, it was found that some diterpenes isolated from different Euphorbia species have anti-cancer activity. In this review, we included compounds isolated from species of the Euphorbia genus with anti-inflammatory or cytotoxic effects published from 2018 to September 2023. The databases used for this review were Science Direct, Scopus, PubMed, Springer, and Google Scholar, using the keywords Euphorbia with anti-inflammatory or cytotoxic activity. In this review, 68 studies were collected and analyzed regarding the anti-inflammatory and anti-cancer activities of 264 compounds obtained from 36 species of the Euphorbia genus. The compounds included in this review are terpenes (95%), of which 68% are diterpenes, especially of the types ingenanes, abietanes, and triterpenes (approximately 15%)

    Medicinal Plants from North and Central America and the Caribbean Considered Toxic for Humans: The Other Side of the Coin

    Get PDF
    The consumption of medicinal plants has notably increased over the past two decades. People consider herbal products as safe because of their natural origin, without taking into consideration whether these plants contain a toxic principle. This represents a serious health problem. A bibliographic search was carried out using published scientific material on native plants from Mexico, Central America, and the Caribbean, which describe the ethnobotanical and toxicological information of medicinal plants empirically considered to be toxic. A total of 216 medicinal plants belonging to 77 families have been reported as toxic. Of these plants, 76 had been studied, and 140 plants lacked studies regarding their toxicological effects. The toxicity of 16 plants species has been reported in clinical cases, particularly in children. From these plants, deaths have been reported with the consumption of Chenopodium ambrosioides, Argemone mexicana, and Thevetia peruviana. In most of the cases, the principle of the plant responsible for the toxicity is unknown. There is limited information about the toxicity of medicinal plants used in Mexico, Central America, and the Caribbean. More toxicological studies are necessary to contribute information about the safe use of the medicinal plants cited in this review

    Anti-Inflammatory Activity of 3, 5-Diprenyl-4-hydroxyacetophenone Isolated from <i>Ageratina pazcuarensis</i>

    No full text
    Inflammation is implicated in a wide variety of physiological and pathological processes. Plants are an important source of active anti-inflammatory compounds. The compound 3, 5-diprenyl-4-hydroxyacetophenone (DHAP) was isolated from the dichloromethane extract of the aerial parts of Ageratina pazcuarensis by chromatography and identified by spectroscopic (IR, NMR) and spectrometric (GC-MS) methods. Anti-inflammatory activity was evaluated on ear edema mouse induced with 12-O-tetradecanoylphorbol 13-acetate (TPA) at 2 mg/ear. The antioxidant activity of DHAP was determined using DPPH assay. Cell viability was tested in J774A.1 macrophages, the levels of NO, TNF-α, IL-1β, IL-6, and IL-10 production in macrophages stimulated with lipopolysaccharide (LPS), and membrane lysis induced by hypotonic solution in erythrocytes were evaluated. DHAP diminished the ear edema mouse in 70.10%, and it had scavenger effect against the radical with IC50 of 26.00 ± 0.37 µg/mL. Likewise, 91.78 µM of this compound inhibited the production of NO (38.96%), IL-1β (55.56%), IL-6 (51.62%), and TNF-α (59.14%) in macrophages and increased the levels of IL-10 (61.20%). Finally, 25 and 50 µg/mL DHAP provided the greatest protection against erythrocyte membrane lysis. These results demonstrate that DHAP has anti-inflammatory activity

    Anti-Inflammatory and Antinociceptive Activities of the Essential Oil of Tagetes parryi A. Gray (Asteraceae) and Verbenone

    No full text
    Tagetes parryi is a plant empirically used to treat gastrointestinal and inflammatory diseases, its essential oil (EOTP) was obtained from the aerial parts, and the composition was elucidated by GC-MS. The in vivo and in vitro anti-inflammatory activities and the antinociceptive activity of EOTP and (1S)-(-)-verbenone (VERB) were assessed. The major compounds identified for EOTP were verbenone (33.39%), dihydrotagetone (26.88%), and tagetone (20.8%). EOTP and VERB diminished the ear oedema induced with TPA by 93.77 % and 81.13 %, respectively. EOTP and VERB decreased inflammation in a 12-O-tetradecanoylphorbol-13-acetate (TPA) chronic model with ED50 = 54.95 mg/kg and 45.24 mg/kg, respectively. EOTP (15 &micro;g/mL) inhibited the in vitro production of the pro-inflammatory mediators NO (67.02%), TNF-&alpha; (69.21%), and IL-6 (58.44%) in LPS-stimulated macrophages. In the acetic induced writhing test, EOTP and VERB showed antinociceptive effects with ED50 = 84.93 mg/kg and ED50 = 45.24 mg/kg, respectively. In phase 1 of the formalin test, EOTP and VERB showed no antinociceptive effects, whereas in phase 2, EOTP (ED50 = 35.45 mg/kg) and VERB (ED50 = 24.84 mg/kg) showed antinociceptive effects. The antinociceptive actions of ETOP and VERB were blocked with the co-administration of L-NAME. This study suggests that EOTP and VERB might be used in the treatment of pain and inflammatory problems
    corecore