203 research outputs found

    Strongly coupled compact lattice QED with staggered fermions

    Get PDF
    We explore the compact U(1) lattice gauge theory with staggered fermions and gauge field action -\sum_P [\beta \cos(\Theta_P) + \gamma \cos(2\Theta_P)], both for dynamical fermions and in the quenched approximation. (\Theta_P denotes the plaquette angle.) In simulations with dynamical fermions at various \gamma \le -0.2 on 6^4 lattices we find the energy gap at the phase transition of a size comparable to the pure gauge theory for \gamma \le 0 on the same lattice, diminishing with decreasing \gamma. This suggests a second order transition in the thermodynamic limit of the theory with fermions for \gamma below some finite negative value. Studying the theory on large lattices at \gamma = -0.2 in the quenched approximation by means of the equation of state we find non-Gaussian values of the critical exponents associated with the chiral condensate, \beta \simeq 0.32 and \delta \simeq 1.8, and determine the scaling function. Furthermore, we evaluate the meson spectrum and study the PCAC relation.Comment: 21 page

    Instant preheating mechanism and UHECR

    Full text link
    Top-down models assume that the still unexplained Ultra High Energy Cosmic Rays (UHECR's) are the decay products of superheavy particles. Such particles may have been produced by one of the post-inflationary reheating mechanisms and may account for a fraction of the cold dark matter. In this paper, we assess the phenomenological applicability of the simplest instant preheating framework not to describe a reheating process, but as a mechanism to generate relic supermassive particles as possible sources of UHECR's. We use cosmic ray flux and cold dark matter observational data to constrain the parameters of the model.Comment: 7 pages, 2 figures, submitted to PR

    Vacuum solutions of the gravitational field equations in the brane world model

    Get PDF
    We consider some classes of solutions of the static, spherically symmetric gravitational field equations in the vacuum in the brane world scenario, in which our Universe is a three-brane embedded in a higher dimensional space-time. The vacuum field equations on the brane are reduced to a system of two ordinary differential equations, which describe all the geometric properties of the vacuum as functions of the dark pressure and dark radiation terms (the projections of the Weyl curvature of the bulk, generating non-local brane stresses). Several classes of exact solutions of the vacuum gravitational field equations on the brane are derived. In the particular case of a vanishing dark pressure the integration of the field equations can be reduced to the integration of an Abel type equation. A perturbative procedure, based on the iterative solution of an integral equation, is also developed for this case. Brane vacuums with particular symmetries are investigated by using Lie group techniques. In the case of a static vacuum brane admitting a one-parameter group of conformal motions the exact solution of the field equations can be found, with the functional form of the dark radiation and pressure terms uniquely fixed by the symmetry. The requirement of the invariance of the field equations with respect to the quasi-homologous group of transformations also imposes a unique, linear proportionality relation between the dark energy and dark pressure. A homology theorem for the static, spherically symmetric gravitational field equations in the vacuum on the brane is also proven.Comment: 13 pages, no figures, to appear in PR

    Dynamics of Brane-World Cosmological Models

    Full text link
    We show that generically the initial singularity is isotropic in spatially homogeneous cosmological models in the brane-world scenario. We then argue that it is plausible that the initial singularity is isotropic in typical brane world cosmological models. Therefore, brane cosmology naturally gives rise to a set of initial data that provide the conditions for inflation to subsequently take place, thereby solving the initial conditions problem and leading to a self--consistent and viable cosmology.Comment: Final version. To appear in Physical Revie

    Building The Sugarcane Genome For Biotechnology And Identifying Evolutionary Trends

    Get PDF
    Background: Sugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome.Results: Three hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences.Conclusion: This release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery. © 2014 de Setta et al.; licensee BioMed Central Ltd.151European Commission: Agriculture and Rural Development: Sugar http://ec.europa.eu/agriculture/sugar/index_en.htmKellogg, E.A., Evolutionary history of the grasses (2001) Plant Physiol, 125, pp. 1198-1205Grivet, L., Arruda, P., Sugarcane genomics: depicting the complex genome of an important tropical crop (2001) Curr Opin Plant Biol, 5, pp. 122-127Piperidis, G., Piperidis, N., D'Hont, A., Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane (2010) Mol Genet Genomics, 284, pp. 65-73D'Hont, A., Unraveling the genome structure of polyploids using FISH and GISHexamples of sugarcane and banana (2005) Cytogenet Genome Res, 109, pp. 27-33D'Hont, A., Glaszmann, J.C., Sugarcane genome analysis with molecular markers: a first decade of research (2001) Int Soc Sugar Cane Technol Proc XXIV Congr, pp. 556-559Tomkins, J., Yu, Y., Miller-Smith, H., Frisch, D., Woo, S., Wing, R., A bacterial artificial chromosome library for sugarcane (1999) Theor Appl Genet, 99, pp. 419-424Vettore, L., Silva, F.R., Kemper, E.L., Souza, G.M., Silva, A.M., Ferro, M., Henrique-Silva, F., Monteiro-Vitorello, C.B., Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane (2003) Genome Res, 13, pp. 2725-2735Repbase http://www.girinst.org/repbase/Domingues, D.S., Cruz, G.M.Q., Metcalfe, C.J., Nogueira, F.T.S., Vicentini, R., Alves, C.S., Van Sluys, M.-A., Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns (2012) BMC Genomics, 13, p. 137National Center for Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov/Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Edwards, R.A., The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes (2008) BMC Bioinformatics, 9, p. 386Keeling, P.L., Myers, A.M., Biochemistry and genetics of starch synthesis (2010) Annu Rev Food Sci Technol, 1, pp. 271-303Phytozome v9.1: Home http://www.phytozome.net/Dias, E.S., Carareto, C.M.A., Ancestral polymorphism and recent invasion of transposable elements in Drosophila species (2012) BMC Evol Biol, 12, p. 119Posada, D., Crandall, K., Intraspecific gene genealogies: trees grafting into networks (2001) Trends Ecol Evol, 16, pp. 37-45Swaminathan, K., Alabady, M.S., Varala, K., De Paoli, E., Ho, I., Rokhsar, D.S., Arumuganathan, A.K., Hudson, M.E., Genomic and small RNA sequencing of Miscanthus x giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses (2010) Genome Biol, 11, pp. R12Zanca, A.S., Vicentini, R., Ortiz-Morea, F.A., Del Bem, L.E., da Silva, M.J., Vincentz, M., Nogueira, F.T., Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane (2010) BMC Plant Biol, 10, p. 260Piriyapongsa, J., Jordan, I.K., A family of human microRNA genes from miniature inverted-repeat transposable elements (2007) PLoS ONE, 2, pp. e203Barrera-Figueroa, B.E., Gao, L., Wu, Z., Zhou, X., Zhu, J., Jin, H., Liu, R., Zhu, J.-K., High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice (2012) BMC Plant Biol, 12, p. 132Nagaki, K., Tsujimoto, H., Sasakuma, T., A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions (1998) Chromosom Res, 6, pp. 295-302Nagaki, K., Neumann, P., Zhang, D., Ouyang, S., Buell, C.R., Cheng, Z., Jiang, J., Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice (2005) Mol Biol Evol, 22, pp. 845-855Vicentini, R., Del Bem, L.E., Van Sluys, M.-A., Nogueira, F., Vincentz, M., Gene content analysis of sugarcane public ESTs reveals thousands of missing coding-genes and an unexpected pool of grasses conserved ncRNAs (2012) Trop Plant Biol, 5, pp. 199-205Kim, C., Lee, T.-H., Compton, R.O., Robertson, J.S., Pierce, G.J., Paterson, A.H., A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin (2013) Plant Mol Biol, 81, pp. 139-147Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Carpita, N.C., The Sorghum bicolor genome and the diversification of grasses (2009) Nature, 457, pp. 551-556Chang, Y., Gong, L., Yuan, W., Li, X., Chen, G., Li, X., Zhang, Q., Wu, C., Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice (2009) Plant Physiol, 151, pp. 2162-2173Feschotte, C., Transposable elements and the evolution of regulatory networks (2008) Nat Rev Genet, 9, pp. 397-405Wang, J., Roe, B., Macmil, S., Yu, Q., Murray, J.E., Tang, H., Chen, C., Ming, R., Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes (2010) BMC Genomics, 11, p. 261Garsmeur, O., Charron, C., Bocs, S., Jouffe, V., Samain, S., Couloux, A., Droc, G., D'Hont, A., High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane (2011) New Phytol, 189, pp. 629-642Jannoo, N., Grivet, L., Chantret, N., Garsmeur, O., Glaszmann, J.C., Arruda, P., D'Hont, A., Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome (2007) Plant J, 50, pp. 574-585Figueira, T.R.E.S., Okura, V., da Silva, F.R., da Silva, M.J., Kudrna, D., Ammiraju, J.S.S., Talag, J., Arruda, P., A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genome (2012) BMC Res Notes, 5, p. 185Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Gillam, B., The B73 maize genome: complexity, diversity, and dynamics (2009) Science, 326, pp. 1112-1115Tenaillon, M.I., Hufford, M.B., Gaut, B.S., Ross-Ibarra, J., Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians (2011) Genome Biol Evol, 3, pp. 219-229Zhang, J., Yu, C., Krishnaswamy, L., Peterson, T., Transposable Elements as Catalysts for Chromosome Rearrangements (2011) Methods Mol Biol, pp. 315-326. , Totowa, NJ: Humana Press, Birchler JAMa, J., Wing, R.A., Bennetzen, J.L., Jackson, S.A., Plant centromere organization: a dynamic structure with conserved functions (2007) Trends Genet, 23, pp. 134-139D'Hont, A., Grivet, L., Feldmann, P., Rao, S., Berding, N., Glaszmann, J.C., Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics (1996) Mol Gen Genet, 250, pp. 405-413Bao, Y., Wendel, J.F., Ge, S., Multiple patterns of rDNA evolution following polyploidy in Oryza (2010) Mol Phylogenet Evol, 55, pp. 136-142Lynch, M., (2007) The Origins of Genome Architecture, , Sunderland, Massachussetts, USA: Sinauer Associates IncThe map-based sequence of the rice genome (2005) Nature, 436, pp. 793-800. , International Rice Genome Sequencing ProjectLiu, B., Xu, C., Zhao, N., Qi, B., Kimatu, J.N., Pang, J., Han, F., Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement (2009) J Genet Genomics, 36, pp. 519-528Lisch, D., How important are transposons for plant evolution? (2012) Nat Rev Genet, 14, pp. 49-61Udall, J.A., Wendel, J.F., Polyploidy and crop improvement (2006) Crop Sci, 46, pp. S3-S14Varshney, R.K., Graner, A., Sorrells, M.E., Genomics-assisted breeding for crop improvement (2005) Trends Plant Sci, 10, pp. 621-630Menossi, M., Silva-Filho, M.C., Vincentz, M., Van-Sluys, M.-A., Souza, G.M., Sugarcane functional genomics: gene discovery for agronomic trait development (2008) Int J Plant Genomics, 2008, p. 458732. , doi:10.1155/2008/458732Palhares, A.C., Rodrigues-Morais, T.B., Van Sluys, M.-A., Domingues, D.S., Maccheroni, W., Jordão, H., Souza, A.P., Vieira, M.L.C., A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers (2012) BMC Genet, 13, p. 51Andersen, J.R., Lübberstedt, T., Functional markers in plants (2003) Trends Plant Sci, 8, pp. 554-560Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C., Schulman, A., Analysis of plant diversity with retrotransposon-based molecular markers (2011) Heredity (Edinb), 106, pp. 520-530PGML BACMan On The Web: Grasses http://www.plantgenome.uga.edu/bacman/BACManwww.phpRice Genome Annotation Project http://rice.plantbiology.msu.edu/Bowers, J.E., Arias, M.A., Asher, R., Avise, J.A., Ball, R.T., Brewer, G.A., Buss, R.W., Soderlund, C.A., Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses (2005) Proc Natl Acad Sci U S A, 102, pp. 13206-13211Adam-Blondon, A.-F., Bernole, A., Faes, G., Lamoureux, D., Pateyron, S., Grando, M.S., Caboche, M., Chalhoub, B., Construction and characterization of BAC libraries from major grapevine cultivars (2005) Theor Appl Genet, 110, pp. 1363-1371Manetti, M.E., Rossi, M., Cruz, G.M.Q., Saccaro, N.L., Nakabashi, M., Altebarmakian, V., Rodier-Goud, M., Van Sluys, M.A., Mutator system derivatives isolated from sugarcane genome sequence (2012) Trop Plant Biol, 5, pp. 233-243Phrap http://www.phrap.org/RepeatMasker http://www.repeatmasker.org/Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Repbase update, a database of eukaryotic repetitive elements (2005) Cytogenet Genome Res, 110, pp. 462-467Han, Y., Wessler, S.R., MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences (2010) Nucleic Acids Res, 38 (22), pp. e199. , doi: 10.1093/nar/gkq862. Epub 2010 Sep 29Frickey, T., Lupas, A., CLANS: a Java application for visualizing protein families based on pairwise similarity (2004) Bioinformatics, 20, pp. 3702-3704Han, Y., Qin, S., Wessler, S.R., Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes (2013) BMC Genomics, 14, p. 71Keller, O., Kollmar, M., Stanke, M., Waack, S., A novel hybrid gene prediction method employing protein multiple sequence alignments (2011) Bioinformatics, 27, pp. 757-763Majoros, W.H., Pertea, M., Salzberg, S.L., TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders (2004) Bioinformatics, 20, pp. 2878-2879Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Hannick, L.I., Maiti, R., White, O., Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies (2003) Nucleic Acids Res, 31, pp. 5654-5666Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Wortman, J.R., Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to assemble spliced alignments (2008) Genome Biol, 9, pp. R7Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions (2011) Nat Methods, 8, pp. 785-786TMHMM Server v. 2.0 http://www.cbs.dtu.dk/services/TMHMM-2.0/Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., Barrell, B., Artemis: sequence visualization and annotation (2000) Bioinformatics, 16, pp. 944-945UniProt http://www.uniprot.org/InterPro: Protein sequence analysis and classification http://www.ebi.ac.uk/interpro/Conesa, A., Götz, S., Blast2GO: a comprehensive suite for functional analysis in plant genomics (2008) Int J Plant Genomics, 2008, pp. 1-12SUCEST-FUN Project http://sucest-fun.org/MG-RAST: metagenomics analysis server http://metagenomics.anl.gov/KAAS - KEGG automatic annotation server http://www.genome.jp/kegg/kaas/Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739Lyons, E., Freeling, M., How to usefully compare homologous plant genes and chromosomes as DNA sequences (2008) Plant J, 53, pp. 661-673Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp Ser, 41, pp. 95-98Geneious - Homepage http://www.geneious.com/Heslop-Harrison, P., Schwarzacher, T., (2000) Practical In Situ Hybridization, , Oxford, UK: BIOS Scientific Publishers LtdAljanabi, S., Forget, L., Dookun, A., An improved and rapid protocol for the isolation of polysaccharide-and polyphenol-free sugarcane DNA (1999) Plant Mol Biol Report, 17, pp. 1-8Maq: Mapping and assembly with qualities http://maq.sourceforge.net/SeqMonk http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/Gasic, K., Hernandez, A., Korban, S.S., RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA (2004) Plant Mol Biol Report, 22 (DECEMBER), pp. 437a-437gLi, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Durbin, R., The sequence Alignment/Map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680Bandelt, H.J., Forster, P., Röhl, A., Median-joining networks for inferring intraspecific phylogenies (1999) Mol Biol Evol, 16, pp. 37-48Paterson, A.H., Freeling, M., Tang, H., Wang, X., Insights from the comparison of plant genome sequences (2010) Annu Rev Plant Biol, 61, pp. 349-37

    Acute biphenotypic leukaemia: immunophenotypic and cytogenetic analysis

    Full text link
    The incidence of acute biphenotypic leukaemia has ranged from less than 1% to almost 50% in various reports in the literature. This wide variability may be attributed to a number of reasons including lack of consistent diagnostic criteria, use of various panels of antibodies, and the failure to recognize the lack of lineage specificity of some of the antibodies used. The morphology, cytochemistry, immunophenotype and cytogenetics of acute biphenotypic leukaemias from our institution were studied. The diagnostic criteria took into consideration the morphology of the analysed cells, light scatter characteristics, and evaluation of antibody fluorescence histograms in determining whether the aberrant marker expression was arising from leukaemic blasts or differentiated bone marrow elements. Fifty-two of 746 cases (7%) fulfilled our criteria for acute biphenotypic leukaemias. These included 30 cases of acute lymphoblastic leukaemia (ALL) expressing myeloid antigens, 21 cases of acute myelogenous leukaemia (AML) expressing lymphoid markers, and one case of ALL expressing both B- and T-cell associated antigens. The acute biphenotypic leukaemia cases consisted of four major immunophenotypic subgroups: CD2± AML (11), CD19± AML (8), CD13 and/or CD33± ALL (24), CD11b± ALL (5) and others (4). Chromosomal analysis was carried out in 42/52 of the acute biphenotypic leukaemia cases; a clonal abnormality was found in 31 of these 42 cases. This study highlights the problems encountered in the diagnosis of acute biphenotypic leukaemia, some of which may be reponsible for the wide variation in the reported incidence of this leukaemia. We suggest that the use of strict, uniform diagnostic criteria may help in establishing a more consistent approach towards diagnosis of this leukaemic entity. We also suggest that biphenotypic leukaemia is comprised of biologically different groups of leukaemia based on immunophenotypic and cytogenetic findings.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73301/1/j.1365-2141.1993.tb03024.x.pd
    corecore