7 research outputs found

    Effect of van der Waals interactions in the DFT description of self-assembled monolayers of thiols on gold

    No full text
    The structure and energetic properties of self-assembled monolayers (SAMs) of alkanethiol derivatives (simple alkanethiols, mercaptoalkanoic acids and aminoalkanethiols with different chain length) adsorbed on the metallic Au(111) surface are investigated through periodic DFT calculations. To sort out the effect of van der Waals (vdW) interactions on the DFT calculations, the results of the standard GGA-PBE functional are compared with those obtained with approaches including the vdW interactions such as those incorporating the Grimme's (GGA-PBE-D2) and the Tkatchenko-Scheffler's (GGA-PBE-TS) schemes, as well as with the optB86b-vdW density functional. The most significant difference between the two sets of results appears for the adsorption energies per thiol molecules: The standard functional predicts energy values 30-40 % lower than those obtained when the van der Waals interactions are taken into account. This is certainly due to a better description of the lateral interactions between the chains of the thiols when including the van der Waals effects. Differences are also found between the adsorption energies predicted by density functionals taking into account the vdW corrections, with values increasing in the order GGA-PBE-D2 < GGA-PBE-TS < optB86b-vdW. Furthermore, the functionals considering dispersion interactions favor much more tilted orientations of the SAMs over the surface with respect to those found using the standard GGA functional (the SAMs' tilt angles increase from 17 degrees-24 degrees to 37 degrees-46 degrees), being the former in closer agreement with available experimental data. In contrast, the SAMs' precession angle and monolayer thickness are less affected by the type of DFT exchange-correlation functional employed. In the case of low surface coverage, the chains of the thiols adopt more tilted configurations and tend to lay side-down onto the surface

    Molecular interactions driving the layer-by-layer assembly of multilayers

    No full text
    This article presents an overview of the different types of intermolecular interactions behind the fabrication of multilayer assemblies using the layer-by-layer (LbL) assembly approach. It comments on the potential impact of each type of intermolecular interaction and materials assembled through them on the development of advanced functional systems or devices for several emerging applications. The discussion begins with a brief overview of the most commonly used bottom-up methods to modify surfaces and fabricate functional multilayer thin films, with a special focus on their main advantages and disadvantages.This work received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. REGPOT-CT2012-316331-POLARIS. The work was also funded by FEDER through the Competitive Factors Operational Program (COMPETE) and by National funds through the Portuguese Foundation for Science and Technology (FCT) in the scope of the projects PTDC/FIS/115048/2009 and PTDC/CTM-BIO/1814/2012. The authors gratefully acknowledge Dr. Luca Gasperini (3B's Research Group, University of Minho, Portugal) for his help with the figures
    corecore