68,149 research outputs found

    Dynamical scaling in Ising and vector spin glasses

    Full text link
    We have studied numerically the dynamics of spin glasses with Ising and XY symmetry (gauge glass) in space dimensions 2, 3, and 4. The nonequilibrium spin-glass susceptibility and the nonequilibrium energy per spin of samples of large size L_b are measured as a function of anneal time t_w after a quench to temperatures T. The two observables are compared to the equilibrium spin-glass susceptibility and the equilibrium energy, respectively, measured as functions of temperature T and system size L for a range of system sizes. For any time and temperature a nonequilibrium time-dependent length scale L*(t_w,T) can be defined by comparing equilibrium and nonequilibrium quantities. Our analysis shows that for all systems studied, an "effective dynamical critical exponent" parametrization L*(t_w,T) = A(T) t^(1/z(T)) fits the data well at each temperature within the whole temperature range studied, which extends from well above the critical temperature to near T = 0 for dimension 2, or to well below the critical temperature for the other space dimensions studied. In addition, the data suggest that the dynamical critical exponent z varies smoothly when crossing the transition temperature.Comment: 14 pages, 13 figures, 9 table

    Time- and frequency-domain polariton interference

    Full text link
    We present experimental observations of interference between an atomic spin coherence and an optical field in a {\Lambda}-type gradient echo memory. The interference is mediated by a strong classical field that couples a weak probe field to the atomic coherence through a resonant Raman transition. Interference can be observed between a prepared spin coherence and another propagating optical field, or between multiple {\Lambda} transitions driving a single spin coherence. In principle, the interference in each scheme can yield a near unity visibility.Comment: 11 pages, 5 figure

    Structural change in multipartite entanglement sharing: a random matrix approach

    Full text link
    We study the typical entanglement properties of a system comprising two independent qubit environments interacting via a shuttling ancilla. The initial preparation of the environments is modeled using random-matrix techniques. The entanglement measure used in our study is then averaged over many histories of randomly prepared environmental states. Under a Heisenberg interaction model, the average entanglement between the ancilla and one of the environments remains constant, regardless of the preparation of the latter and the details of the interaction. We also show that, upon suitable kinematic and dynamical changes in the ancilla-environment subsystems, the entanglement-sharing structure undergoes abrupt modifications associated with a change in the multipartite entanglement class of the overall system's state. These results are invariant with respect to the randomized initial state of the environments.Comment: 10 pages, RevTeX4 (Minor typo's corrected. Closer to published version

    Single vortex fluctuations in a superconducting chip as generating dephasing and spin flips in cold atom traps

    Full text link
    We study trapping of a cold atom by a single vortex line in an extreme type II superconducting chip, allowing for pinning and friction. We evaluate the atom's spin flip rate and its dephasing due to the vortex fluctuations in equilibrium and find that they decay rapidly when the distance to the vortex exceeds the magnetic penetration length. We find that there are special spin orientations, depending on the spin location relative to the vortex, at which spin dephasing is considerably reduced while perpendicular directions have a reduced spin flip rate. We also show that the vortex must be perpendicular to the surface for a general shape vortex.Comment: 6 pages, 4 figure

    Lang's imagery training procedure : a clinical study

    No full text
    Imagery has become one of the major tools in the armamentarium of the clinical psychologist. It enables the clinician to work within an environment that is almost as close to reality for the client as reality itself. Part of the reality of an image for the client lies in the client's responses to the image. The greater the fear aroused by a frightening image the more likely it is that the image more closely approximates the client's behaviour in real life. Lang( 1979(a)\ 1984) argues that images are networks of natural language propositions which represent three aspects of a situation. These are the stimulus elements, the meaning or interpretation of the stimuli, and the response elements. Lang argues that response propositions are the most important aspect of an image because they represent the persons actual behaviour to the stimuli and it is this behaviour that clinicians attempt to change in therapy. Lang has been able to establish that the use of explicit response elements in imagery scripts is more effective at producing physiological arousal to imagery than the use of stimulus elements alone. He has also found that training people to focus on the response elements of imagery scripts increases their physiological arousal. But Lang has paid little attention to his imagery training procedure. This thesis was aimed at replicating Lang's finding s with regard to the procedure and also attempting to delineate the parameters of the procedure with regard to its application in a clinical setting. This involved the intensive study of eight pre-selected subjects, using a single subject methodology, to provide a picture of the processes that were operating during the training procedure itself. Both the outcome of the training and the nature of the changes involved during training were considered. The data generally replicated Lang's findings with regard to the effect of training on physiological arousal. But some inconsistencies in the way that subjects responded during the course of the training raised the question as to whether Lang's theoretical framework could be supported by the type of data that was gathered

    Detection of the United States Neisseria meningitidis urethritis clade in the United Kingdom, August and December 2019 - emergence of multiple antibiotic resistance calls for vigilance.

    Get PDF
    Since 2015 in the United States (US), the US Neisseria meningitidis urethritis clade (US_NmUC) has caused a large multistate outbreak of urethritis among heterosexual males. Its 'parent' strain caused numerous outbreaks of invasive meningococcal disease among men who have sex with men in Europe and North America. We highlight the arrival and dissemination of US_NmUC in the United Kingdom and the emergence of multiple antibiotic resistance. Surveillance systems should be developed that include anogenital meningococci

    A Gel Probe Equilibrium Sampler for Measuring Arsenic Porewater Profiles and Sorption Gradients in Sediments: I. Laboratory Development

    Get PDF
    A gel probe equilibrium sampler has been developed to study arsenic (As) geochemistry and sorption behavior in sediment porewater. The gels consist of a hydrated polyacrylamide polymer, which has a 92% water content. Two types of gels were used in this study. Undoped (clear) gels were used to measure concentrations of As and other elements in sediment porewater. The polyacrylamide gel was also doped with hydrous ferric oxide (HFO), an amorphous iron (Fe) oxyhydroxide. When deployed in the field, HFO-doped gels introduce a fresh sorbent into the subsurface thus allowing assessment of in situ sorption. In this study, clear and HFO-doped gels were tested under laboratory conditions to constrain the gel behavior prior to field deployment. Both types of gels were allowed to equilibrate with solutions of varying composition and re-equilibrated in acid for analysis. Clear gels accurately measured solution concentrations (±1%), and As was completely recovered from HFO-doped gels (±4%). Arsenic speciation was determined in clear gels through chromatographic separation of the re-equilibrated solution. For comparison to speciation in solution, mixtures of As(III) and As(V) adsorbed on HFO embedded in gel were measured in situ using X-ray absorption spectroscopy (XAS). Sorption densities for As(III) and As(V) on HFO embedded in gel were obtained from sorption isotherms at pH 7.1. When As and phosphate were simultaneously equilibrated (in up to 50-fold excess of As) with HFO-doped gels, phosphate inhibited As sorption by up to 85% and had a stronger inhibitory effect on As(V) than As(III). Natural organic matter (>200 ppm) decreased As adsorption by up to 50%, and had similar effects on As(V) and As(III). The laboratory results provide a basis for interpreting results obtained by deploying the gel probe in the field and elucidating the mechanisms controlling As partitioning between solid and dissolved phases in the environment

    Extended Scaling for the high dimension and square lattice Ising Ferromagnets

    Full text link
    In the high dimension (mean field) limit the susceptibility and the second moment correlation length of the Ising ferromagnet depend on temperature as chi(T)=tau^{-1} and xi(T)=T^{-1/2}tau^{-1/2} exactly over the entire temperature range above the critical temperature T_c, with the scaling variable tau=(T-T_c)/T. For finite dimension ferromagnets temperature dependent effective exponents can be defined over all T using the same expressions. For the canonical two dimensional square lattice Ising ferromagnet it is shown that compact "extended scaling" expressions analogous to the high dimensional limit forms give accurate approximations to the true temperature dependencies, again over the entire temperature range from T_c to infinity. Within this approach there is no cross-over temperature in finite dimensions above which mean-field-like behavior sets in.Comment: 6 pages, 6 figure
    • …
    corecore