4,872 research outputs found

    Profiling unauthorized natural resource users for better targeting of conservation interventions

    Get PDF
    Unauthorized use of natural resources is a key threat to many protected areas. Approaches to reducing this threat include law enforcement and integrated conservation and development (ICD) projects, but for such ICDs to be targeted effectively, it is important to understand who is illegally using which natural resources and why. The nature of unauthorized behavior makes it difficult to ascertain this information through direct questioning. Bwindi Impenetrable National Park, Uganda, has many ICD projects, including authorizing some local people to use certain nontimber forest resources from the park. However, despite over 25 years of ICD, unauthorized resource use continues. We used household surveys, indirect questioning (unmatched count technique), and focus group discussions to generate profiles of authorized and unauthorized resource users and to explore motivations for unauthorized activity. Overall, unauthorized resource use was most common among people from poor households who lived closest to the park boundary and farthest from roads and trading centers. Other motivations for unauthorized resource use included crop raiding by wild animals, inequity of revenue sharing, and lack of employment, factors that created resentment among the poorest communities. In some communities, benefits obtained from ICD were reported to be the greatest deterrents against unauthorized activity, although law enforcement ranked highest overall. Despite the sensitive nature of exploring unauthorized resource use, management‐relevant insights into the profiles and motivations of unauthorized resource users can be gained from a combination of survey techniques, as adopted here. To reduce unauthorized activity at Bwindi, we suggest ICD benefit the poorest people living in remote areas and near the park boundary by providing affordable alternative sources of forest products and addressing crop raiding. To prevent resentment from driving further unauthorized activity, ICDs should be managed transparently and equitably

    Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses?

    Get PDF
    Cropping systems comprising winter catch crops followed by spring wheat could reduce N leaching risks compared to traditional winter wheat systems in humid climates. We studied the soil mineral N (Ninorg) and root growth of winter- and spring wheat to 2.5 m depth during three years. Root depth of winter wheat (2.2 m) was twice that of spring wheat, and this was related to much lower amounts of Ninorg in the 1 to 2.5 m layer after winter wheat (81 kg Ninorg ha-1 less). When growing winter catch crops before spring wheat, N content in the 1 to 2.5 m layer after spring wheat was not different from that after winter wheat. The results suggest that by virtue of its deep rooting, winter wheat may not lead to high levels of leaching as it is often assumed in humid climates. Deep soil and root measurements (below 1 m) in this experiment were essential to answer the questions we posed

    Non-invasive, label-free optical analysis to detect aneuploidy within the inner cell mass of the preimplantation embryo

    Full text link
    STUDY QUESTION: Can label-free, non-invasive optical imaging by hyperspectral autofluorescence microscopy discern between euploid and aneuploid cells within the inner cell mass (ICM) of the mouse preimplantation embryo? SUMMARY ANSWER: Hyperspectral autofluorescence microscopy enables discrimination between euploid and aneuploid ICM in mouse embryos. WHAT IS KNOWN ALREADY: Euploid/aneuploid mosaicism affects up to 17.3% of human blastocyst embryos with trophectoderm biopsy or spent media currently utilized to diagnose aneuploidy and mosaicism in clinical in vitro fertilization. Based on their design, these approaches will fail to diagnose the presence or proportion of aneuploid cells within the foetal lineage ICM of some blastocyst embryos. STUDY DESIGN, SIZE, DURATION: The impact of aneuploidy on cellular autofluorescence and metabolism of primary human fibroblast cells and mouse embryos was assessed using a fluorescence microscope adapted for imaging with multiple spectral channels (hyperspectral imaging). Primary human fibroblast cells with known ploidy were subjected to hyperspectral imaging to record native cell fluorescence (4-6 independent replicates, euploid n = 467; aneuploid n = 969). For mouse embryos, blastomeres from the eight-cell stage (five independent replicates: control n = 39; reversine n = 44) and chimeric blastocysts (eight independent replicates: control n = 34; reversine n = 34; 1:1 (control:reversine) n = 30 and 1:3 (control:reversine) n = 37) were utilized for hyperspectral imaging. The ICM from control and reversine-treated embryos were mechanically dissected and their karyotype confirmed by whole genome sequencing (n = 13 euploid and n = 9 aneuploid). PARTICIPANTS/MATERIALS, SETTING, METHODS: Two models were employed: (i) primary human fibroblasts with known karyotype and (ii) a mouse model of embryo aneuploidy where mouse embryos were treated with reversine, a reversible spindle assembly checkpoint inhibitor, during the four- to eight-cell division. Individual blastomeres were dissociated from control and reversine-treated eight-cell embryos and either imaged directly or used to generate chimeric blastocysts with differing ratios of control:reversine-treated cells. Individual blastomeres and embryos were interrogated by hyperspectral imaging. Changes in cellular metabolism were determined by quantification of metabolic co-factors (inferred from their autofluorescence signature): NAD(P)H and flavins with the subsequent calculation of the optical redox ratio (ORR: flavins/[NAD(P)H + flavins]). Autofluorescence signals obtained from hyperspectral imaging were examined mathematically to extract features from each cell/blastomere/ICM. This was used to discriminate between different cell populations. MAIN RESULTS AND THE ROLE OF CHANCE: An increase in the relative abundance of NAD(P)H and decrease in flavins led to a significant reduction in the ORR for aneuploid cells in primary human fibroblasts and reversine-treated mouse blastomeres (P < 0.05). Mathematical analysis of endogenous cell autofluorescence achieved separation between (i) euploid and aneuploid primary human fibroblast cells, (ii) control and reversine-treated mouse blastomeres cells, (iii) control and reversine-treated chimeric blastocysts, (iv) 1:1 and 1:3 chimeric blastocysts and (v) confirmed euploid and aneuploid ICM from mouse blastocysts. The accuracy of these separations was supported by receiver operating characteristic curves with areas under the curve of 0.97, 0.99, 0.87, 0.88 and 0.93, respectively. We believe that the role of chance is low as mathematical features separated euploid from aneuploid in both human fibroblasts and ICM of mouse blastocysts.N/A. LIMITATIONS, REASONS FOR CAUTION: Although we were able to discriminate between euploid and aneuploid ICM in mouse blastocysts, confirmation of this approach in human embryos is required. While we show this approach is safe in mouse, further validation is required in large animal species prior to implementation in a clinical setting. WIDER IMPLICATIONS OF THE FINDINGS: We have developed an original, accurate and non-invasive optical approach to assess aneuploidy within the ICM of mouse embryos in the absence of fluorescent tags. Hyperspectral autofluorescence imaging was able to discriminate between euploid and aneuploid human fibroblast and mouse blastocysts (ICM). This approach may potentially lead to a new diagnostic for embryo analysis. STUDY FUNDING/COMPETING INTEREST(S): K.R.D. is supported by a Mid-Career Fellowship from the Hospital Research Foundation (C-MCF-58-2019). This study was funded by the Australian Research Council Centre of Excellence for Nanoscale Biophotonics (CE140100003) and the National Health and Medical Research Council (APP2003786). The authors declare that there is no conflict of interest

    Resolving confusions about jarrah dieback - don’t forget the plants

    Get PDF
    The name jarrah dieback has been used for two different disorders, leading to considerable confusion. It was coined in the 1940s to describe the sudden death of groups of jarrah (Eucalyptus marginata) trees in south western Western Australia, which occurred on poorly drained sites, following exceptionally heavy rainfall. In the 1960s these sites were shown to be infested by Phytophthora cinnamomi and jarrah deaths were attributed to it, even though it was only isolated from 5 % of sampled trees. Also the definition of jarrah dieback was expanded to include deaths of many other plants on infested sites, from which P. cinnamomi was more readily isolated. Jarrah trees die from severe water deficiency, indicating problems with water conduction through roots. Xylem vessel diameters vary along roots, being narrow at the root collar, while distally they are larger, providing water storage. Jarrah transpires vigorously during summer, accessing water at depth on sites with deep soil, but being more dependent on internally stored water when root systems are shallower. Following waterlogging, sapwood vessels become blocked with tyloses, reducing both conductivity and potential water storage; such trees may have insufficient water reserves for summer survival. In jarrah P. cinnamomi is unlikely to cause water deficiency because sapwood invasion is rapidly contained in healthy roots. Recent investigations into P. cinnamomi invasion and host responses in other plants show that it can potentially cause a vascular wilt in Banksia spp. and chronic, symptomless infections in herbaceous plants. Susceptibility to waterlogging damage, and/or mortality resulting from infection by P. cinnamomi can only be clarified by detailed knowledge of the hosts and their vulnerabilities. This is essential for making diagnoses, devising management strategies, and avoiding the confusions of the past

    The effects of clinical task interruptions on subsequent performance of a medication pre-administration task

    Get PDF
    There is a surge of research exploring the role of task interruptions in the manifestation of primary task errors both in controlled experimental settings, and safety critical workplaces such as healthcare. Despite such research providing valuable insights into the disruptive properties of task interruption, and, the importance of considering the likely disruptive consequences of clinical task interruptions in healthcare environments, there is an urgent need for an approach that best mimics complex working environments such as healthcare, whilst allowing better control over experimental variables with minimal constraints. We propose that this can be achieved with ecologically sensitive experimental tasks designed to have high levels of experimental control so that theoretical as well as practical parameters and factors can be tested. We developed a theoretically and ecologically informed procedural memory-based task - the CAMROSE Medication Pre-Administration Task. Results revealed significantly more sequence errors were made on low, moderate and high complex conditions compared to no interruption condition. There was no significant difference in non-sequence errors. Findings reveal the importance of developing ecologically valid tasks to explore non-observable characteristics of clinical task interruptions. Both theoretical and possible practical implications are discussed

    Publisher Correction: Non-invasive assessment of exfoliated kidney cells extracted from urine using multispectral autofluorescence features (Scientific Reports, (2021), 11, 1, (10655), 10.1038/s41598-021-89758-4)

    Get PDF
    In the original version of this Article Saabah B. Mahbub and Long T. Nguyen were omitted as equally contributing authors. Additionally, Sonia Saad and Ewa M. Goldys were omitted as jointly supervised authors. This error has now been corrected in the PDF version of the Article; the HTML version was correct from the time of publication

    Nutritional and Exercise-Focused Lifestyle Interventions and Glycemic Control in Women with Diabetes in Pregnancy: A Systematic Review and Meta-Analysis of Randomized Clinical Trials

    Get PDF
    Diabetes disrupts one in six pregnancies, bestowing immediate and long-term health risks to mother and child. Diet and exercise are commonly prescribed to control dysglycemia, but their effectiveness across sub-populations and types of diabetes (type-1; type-2; or gestational diabetes mellitus, GDM) is uncertain. Therefore, a systematic review and meta-analysis on the effect of diet and/or exercise on glycemia in pregnant women with diabetes was conducted. Random effects models were used to evaluate effect sizes across studies and anticipated confounders (e.g., age, ethnicity, BMI). Of the 4845 records retrieved, 26 studies (8 nutritional supplements, 12 dietary, and 6 exercise interventions) were included. All studies were conducted in patients with GDM. Overall, supplement- and exercise-based interventions reduced fasting glucose (−0.30 mmol/L; 95% CI = −0.55, −0.06; p = 0.02; and 0.10 mmol/L; 95% CI = −0.20, −0.01; p = 0.04); and supplement- and diet-based interventions reduced HOMA-IR (−0.40; 95% CI = −0.58, −0.22; p < 0.001; and −1.15; 95% CI = −2.12, −0.17; p = 0.02). Subgroup analysis by confounders only confirmed marginal changed effect sizes. Our results suggest a favorable role of certain nutritional supplements, diet, and exercise practices on glycemia in women with GDM and underline a lack of evidence in ~20% of other diabetes-related pregnancies (i.e., women with pre-existing diabetes)

    Centralized Modularity of N-Linked Glycosylation Pathways in Mammalian Cells

    Get PDF
    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are attached to proteins and lipids. Glycans are involved in fundamental biological processes, including protein folding and clearance, cell proliferation and apoptosis, development, immune responses, and pathogenesis. One of the major types of glycans, N-linked glycans, is formed by sequential attachments of monosaccharides to proteins by a limited number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thereby generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigated the large-scale organization of such N-linked glycosylation pathways in mammalian cells. The N-linked glycosylation pathways are extremely modular, and are composed of cohesive topological modules that directly branch from a common upstream pathway of glycan synthesis. This unique structural property allows the glycan production between modules to be controlled by the upstream region. Although the enzymes act on multiple glycan substrates, indicating cross-talk between modules, the impact of the cross-talk on the module-specific enhancement of glycan synthesis may be confined within a moderate range by transcription-level control. The findings of the present study provide experimentally-testable predictions for glycosylation processes, and may be applicable to therapeutic glycoprotein engineering

    Keele Aches and Pains Study Protocol: validity, acceptability and feasibility of the Keele STarT MSK Tool for subgrouping musculoskeletal patients in primary care

    Get PDF
    Musculoskeletal conditions represent a considerable burden worldwide, and are predominantly managed in primary care. Evidence suggests that many musculoskeletal conditions share similar prognostic factors. Systematically assessing patient’s prognosis, and matching treatments based on prognostic subgroups (stratified care), has been shown to be clinically and cost effective. This study (Keele Aches and Pains Study: KAPS) aims to refine and examine the validity of a brief questionnaire (Keele STarT MSK Tool), designed to enable risk-stratification of primary care patients with the five most common musculoskeletal pain presentations. We will also describe the subgroups of patients, and explore the acceptability and feasibility of using the tool, and how the tool is best implemented in clinical practice. The study design is mixed methods: a prospective, quantitative observational cohort study with a linked qualitative focus group and interview study. Patients who have consulted their General Practitioner or Healthcare Practitioner (GP/HCP) about a relevant musculoskeletal condition will be recruited from General practice. Participating patients will complete a baseline questionnaire (shortly after consultation), plus questionnaires 2 and 6 months later. A sub-sample of patients, along with participating GPs and HCPs, will be invited to take part in qualitative focus groups and interviews. The Keele STarT MSK Tool will be refined based on face, discriminant, construct and predictive validity at baseline and 2 months, and validated using data from 6 month follow-up. Patient and clinician perspectives about using the tool will be explored. This study will provide a validated prognostic tool (the Keele STarT MSK Tool) with established cut-points to stratify patients with the five most common musculoskeletal presentations into low, medium and high risk subgroups. The qualitative analysis of patient and healthcare perspectives will inform how to embed the tool into clinical practice using established general practice IT systems and clinician support packages

    Understanding the Factors that Support or Inhibit Livelihood Diversification in Coastal Cambodia

    Get PDF
    The DFID funded Aquatic Resource Dependency and Benefit Flows Project (ARDB) was a short research project (from January 2005 until August 2005) implemented by IMM of the UK, the Community Fisheries Development Office (CFDO) of the Department of Fisheries (DoF) and the Community Based Natural Resource Management Learning Institute (CBNRM LI), both based in Cambodia. It had two aims: 1) to build capacity amongst government and NGO staff in understanding the importance of livelihood diversification as a potential tool for natural resource management, and 2) to further our understanding of how factors that support or inhibit rural household diversification may apply in the Cambodian coastal context and beyond. The current report reviews the background to, and the findings of, that research
    corecore