1,610 research outputs found

    Geometric Analysis of Synchronization in Neuronal Networks with Global Inhibition and Coupling Delays

    Get PDF
    We study synaptically coupled neuronal networks to identify the role of coupling delays in network's synchronized behaviors. We consider a network of excitable, relaxation oscillator neurons where two distinct populations, one excitatory and one inhibitory, are coupled and interact with each other. The excitatory population is uncoupled, while the inhibitory population is tightly coupled. A geometric singular perturbation analysis yields existence and stability conditions for synchronization states under different firing patterns between the two populations, along with formulas for the periods of such synchronous solutions. Our results demonstrate that the presence of coupling delays in the network promotes synchronization. Numerical simulations are conducted to supplement and validate analytical results. We show the results carry over to a model for spindle sleep rhythms in thalamocortical networks, one of the biological systems which motivated our study. The analysis helps to explain how coupling delays in either excitatory or inhibitory synapses contribute to producing synchronized rhythms.Comment: 43 pages, 12 figure

    Phase models and clustering in networks of oscillators with delayed coupling

    Get PDF
    We consider a general model for a network of oscillators with time delayed, circulant coupling. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to study the existence and stability of cluster solutions. Cluster solutions are phase locked solutions where the oscillators separate into groups. Oscillators within a group are synchronized while those in different groups are phase-locked. We give model independent existence and stability results for symmetric cluster solutions. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies

    One-Dimensional Population Density Approaches to Recurrently Coupled Networks of Neurons with Noise

    Get PDF
    Mean-field systems have been previously derived for networks of coupled, two-dimensional, integrate-and-fire neurons such as the Izhikevich, adapting exponential (AdEx) and quartic integrate and fire (QIF), among others. Unfortunately, the mean-field systems have a degree of frequency error and the networks analyzed often do not include noise when there is adaptation. Here, we derive a one-dimensional partial differential equation (PDE) approximation for the marginal voltage density under a first order moment closure for coupled networks of integrate-and-fire neurons with white noise inputs. The PDE has substantially less frequency error than the mean-field system, and provides a great deal more information, at the cost of analytical tractability. The convergence properties of the mean-field system in the low noise limit are elucidated. A novel method for the analysis of the stability of the asynchronous tonic firing solution is also presented and implemented. Unlike previous attempts at stability analysis with these network types, information about the marginal densities of the adaptation variables is used. This method can in principle be applied to other systems with nonlinear partial differential equations.Comment: 26 Pages, 6 Figure

    Elegy

    Get PDF

    The Integration of Constructive Visualization, Self-Talk, and Relaxation in the Acquisition of Social Skills

    Get PDF
    The need for teaching social skills, imagery, relaxation, and self-talk was studied and confirmed. Review and use of many of these curriculums revealed overlap among some curriculums, but none fully integrated skills from each of the diverse approaches to teaching social competence. The purpose of this project was to integrate a select body of information addressing social skills, self-talk, relaxation, and imagery into a developmental curriculum for use with children and adolescents
    corecore