4,025 research outputs found

    No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis

    Get PDF
    BACKGROUND: Mitochondrial dysfunction is an established feature of multiple sclerosis (MS). We recently described high levels of mitochondrial DNA (mtDNA) deletions within respiratory enzyme-deficient (lacking mitochondrial respiratory chain complex IV with intact complex II) neurons and choroid plexus epithelial cells in progressive MS. OBJECTIVES: The objective of this paper is to determine whether respiratory enzyme deficiency and mtDNA deletions in MS were in excess of age-related changes within muscle, which, like neurons, are post-mitotic cells that frequently harbour mtDNA deletions with ageing and in disease. METHODS: In progressive MS cases (n=17), known to harbour an excess of mtDNA deletions in the central nervous system (CNS), and controls (n=15), we studied muscle (paraspinal) and explored mitochondria in single fibres. Histochemistry, immunohistochemistry, laser microdissection, real-time polymerase chain reaction (PCR), long-range PCR and sequencing were used to resolve the single muscle fibres. RESULTS: The percentage of respiratory enzyme-deficient muscle fibres, mtDNA deletion level and percentage of muscle fibres harbouring high levels of mtDNA deletions were not significantly different in MS compared with controls. CONCLUSION: Our findings do not provide support to the existence of a diffuse mitochondrial abnormality involving multiple systems in MS. Understanding the cause(s) of the CNS mitochondrial dysfunction in progressive MS remains a research priority

    Thermal effects on electron-phonon interaction in silicon nanostructures

    Full text link
    Raman spectra from silicon nanostructures, recorded using excitation laser power density of 1.0 kW/cm^2, is employed here to reveal the dominance of thermal effects at temperatures higher than the room temperature. Room temperature Raman spectrum shows only phonon confinement and Fano effects. Raman spectra recorded at higher temperatures show increase in FWHM and decrease in asymmetry ratio with respect to its room temperature counterpart. Experimental Raman scattering data are analyzed successfully using theoretical Raman line-shape generated by incorporating the temperature dependence of phonon dispersion relation. Experimental and theoretical temperature dependent Raman spectra are in good agreement. Although quantum confinement and Fano effects persists, heating effects start dominating at higher temperatures than room tempaerature.Comment: 9 Pages, 3 Figures and 1 Tabl

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.

    Differential regulation of NF-κB activation and function by topoisomerase II inhibitors

    Get PDF
    BACKGROUND: While many common chemotherapeutic drugs and other inducers of DNA-damage result in both NF-κB nuclear translocation and DNA-binding, we have previously observed that, depending on the precise stimulus, there is great diversity of the function of NF-κB. In particular, we found that treatment of U-2 OS osteosarcoma cells with the anthracycine daunorubicin or with ultraviolet (UV-C) light resulted in a form of NF-κB that repressed rather than induced NF-κB reporter plasmids and the expression of specific anti-apoptotic genes. Anthracyclines such as daunorubicin can induce DNA-damage though inhibiting topoisomerase II, intercalating with DNA and undergoing redox cycling to produce oxygen free radicals. In this study we have investigated other anthracyclines, doxorubicin and aclarubicin, as well as the anthracenedione mitoxantrone together with the topoisomerase II inhibitor ICRF-193, which all possess differing characteristics, to determine which of these features is specifically required to induce both NF-κB DNA-binding and transcriptional repression in U-2 OS cells. RESULTS: The use of mitoxantrone, which does not undergo redox cycling, and the reducing agent epigallocatechingallate (EGCG) demonstrated that oxygen free radical production is not required for induction of NF-κB DNA-binding and transcriptional repression by these agents and UV-C. In addition, the use of aclarubicin, which does not directly inhibit topoisomerase II and ICRF-193, which inhibits topoisomerase II but does not intercalate into DNA, demonstrated that topoisomerase II inhibition is not sufficient to induce the repressor form of NF-κB. CONCLUSION: Induction of NF-κB DNA-binding and transcriptional repression by topoisomerase II inhibitors was found to correlate with an ability to intercalate into DNA. Although data from our and other laboratories indicates that topoisomerase II inhibition and oxygen free radicals do regulate NF-κB, they are not required for the particular ability of NF-κB to repress rather than activate transcription. Together with our previous data, these results demonstrate that the nature of the NF-κB response is context dependent. In a clinical setting such effects could profoundly influence the response to chemotherapy and suggest that new methods of analyzing NF-κB function could have both diagnostic and prognostic value

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Female partners of patients after surgical prostate cancer treatment: interactions with physicians and support needs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few studies have explored the women's experiences as a result of a partners' diagnosis of prostate cancer. This study begins to explore women's interactions with physicians (primary care and urologist) and the support needs associated with the diagnosis and treatment of their partners' prostate cancer.</p> <p>Methods</p> <p>Two focus groups (n = 14) of women whose partners were diagnosed with prostate cancer (diagnoses' 1 - 18 months). A trained facilitator used open-ended questions to explore ideas. The framework approach was used to analyze the transcripts.</p> <p>Results</p> <p>Three main themes emerged: 1. <b>More support</b>. Validation and information is needed for women including emotional support and opportunities to share experiences. 2. <b>Role of the physician</b>. The transfer of care once specialized treatment is no longer needed remained poorly defined, which increased confusion and feelings of abandonment related to the role of the primary physician. 3. <b>Partners' relationship changes</b>. Men became more dependent on their partners for support and to act as the primary communicator and caregiver.</p> <p>Conclusions</p> <p>Additional research is needed in this field to confirm the importance of training primary care physicians to consider holistic treatment approaches that recognize the partner and family needs as important in the complete physical and emotional healing of their patients.</p

    Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films

    Full text link
    Crystalline Silicon-on-Sapphire (SOS) films were implanted with boron (B+^+) and phosphorous (P+^+) ions. Different samples, prepared by varying the ion dose in the range 101410^{14} to 5 x 101510^{15} and ion energy in the range 150-350 keV, were investigated by the Raman spectroscopy, photoluminescence (PL) spectroscopy and glancing angle x-ray diffraction (GAXRD). The Raman results from dose dependent B+^+ implanted samples show red-shifted and asymmetrically broadened Raman line-shape for B+^+ dose greater than 101410^{14} ions cm2^{-2}. The asymmetry and red shift in the Raman line-shape is explained in terms of quantum confinement of phonons in silicon nanostructures formed as a result of ion implantation. PL spectra shows size dependent visible luminescence at \sim 1.9 eV at room temperature, which confirms the presence of silicon nanostructures. Raman studies on P+^+ implanted samples were also done as a function of ion energy. The Raman results show an amorphous top SOS surface for sample implanted with 150 keV P+^+ ions of dose 5 x 101510^{15} ions cm2^{-2}. The nanostructures are formed when the P+^+ energy is increased to 350 keV by keeping the ion dose fixed. The GAXRD results show consistency with the Raman results.Comment: 9 Pages, 6 Figures and 1 Table, \LaTex format To appear in SILICON(SPRINGER

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    Evo-devo of human adolescence: beyond disease models of early puberty

    Get PDF
    Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research
    corecore