670 research outputs found

    Tenecteplase for the treatment of acute ischemic stroke: a review of completed and ongoing randomized controlled trials

    Get PDF
    Alteplase has been the mainstay of thrombolytic treatment since the National Institutes of Neurological Disorders and Stroke trial was published in 1995. Over recent years, several trials have investigated alternative thrombolytic agents. Tenecteplase, a genetically engineered mutant tissue plasminogen activator, has a longer half-life, allowing single intravenous bolus administration without infusion, is more fibrin specific, produces less systemic depletion of circulating fibrinogen, and is more resistant to plasminogen activator inhibitor compared to alteplase. Tenecteplase is established as the first-line intravenous thrombolytic drug for myocardial infarction, where it has been shown to achieve comparable reperfusion with reduced risk of systemic bleeding in comparison to alteplase. We review the literature on tenecteplase for the treatment of acute ischemic stroke, with a focus on the major completed and ongoing trials. Overall, tenecteplase shows promise for treatment of acute ischemic stroke, both in populations currently eligible for alteplase and also in groups not currently treated with thrombolysis

    Excitation spectrum of vortex lattices in rotating Bose-Einstein condensates

    Full text link
    Using the coarse grain averaged hydrodynamic approach, we calculate the excitation spectrum of vortex lattices sustained in rotating Bose-Einstein condensates. The spectrum gives the frequencies of the common-mode longitudinal waves in the hydrodynamic regime, including those of the higher-order compressional modes. Reasonable agreement with the measurements taken in a recent JILA experiment is found, suggesting that one of the longitudinal modes reported in the experiment is likely to be the n=2n=2, m=0m=0 mode.Comment: 2 figures. Submitted to Physical Review A. v2 contains more references. No change in the main resul

    Nonlinear dynamics for vortex lattice formation in a rotating Bose-Einstein condensate

    Full text link
    We study the response of a trapped Bose-Einstein condensate to a sudden turn-on of a rotating drive by solving the two-dimensional Gross-Pitaevskii equation. A weakly anisotropic rotating potential excites a quadrupole shape oscillation and its time evolution is analyzed by the quasiparticle projection method. A simple recurrence oscillation of surface mode populations is broken in the quadrupole resonance region that depends on the trap anisotropy, causing stochastization of the dynamics. In the presence of the phenomenological dissipation, an initially irrotational condensate is found to undergo damped elliptic deformation followed by unstable surface ripple excitations, some of which develop into quantized vortices that eventually form a lattice. Recent experimental results on the vortex nucleation should be explained not only by the dynamical instability but also by the Landau instability; the latter is necessary for the vortices to penetrate into the condensate.Comment: RevTex4, This preprint includes no figures. You can download the complete article and figures at http://matter.sci.osaka-cu.ac.jp/bsr/cond-mat.htm

    Coherently Scattering Atoms from an Excited Bose-Einstein Condensate

    Full text link
    We consider scattering atoms from a fully Bose-Einstein condensed gas. If we take these atoms to be identical to those in the Bose-Einstein condensate, this scattering process is to a large extent analogous to Andreev reflection from the interface between a superconducting and a normal metal. We determine the scattering wave function both in the absence and the presence of a vortex. Our results show a qualitative difference between these two cases that can be understood as due to an Aharonov-Bohm effect. It leads to the possibility to experimentally detect and study vortices in this way.Comment: 5 pages of ReVTeX and 2 postscript figure

    PREDICTING THE SUMMER TEMPERATURE OF SMALL STREAMS IN SOUTHWESTERN WISCONSIN 1

    Full text link
    One of the biggest challenges in managing cold water streams in the Midwest is understanding how stream temperature is controlled by the complex interactions among meteorologic processes, channel geometry, and ground water inflow. Inflow of cold ground water, shade provided by riparian vegetation, and channel width are the most important factors controlling summer stream temperatures. A simple screening model was used to quantitatively evaluate the importance of these factors and guide management decisions. The model uses an analytical solution to the heat transport equation to predict steady-state temperature throughout a stream reach. The model matches field data from four streams in southwestern Wisconsin quite well (typically within 1°C) and helps explain the observed warming and cooling trends along each stream reach. The distribution of ground water inflow throughout a stream reach has an important influence on stream temperature, and springs are especially effective at providing thermal refuge for fish. Although simple, this model provides insight into the importance of ground water and the impact different management strategies, such as planting trees to increase shade, may have on summer stream temperature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74032/1/j.1752-1688.2005.tb03714.x.pd

    Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East : vertical peak ground acceleration and spectral acceleration

    Get PDF
    This article presents equations for the estimation of vertical strong ground motions caused by shallow crustal earthquakes with magnitudes M w 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is similar to that observed for horizontal motions and is not large and corresponds to factors between 0.7 (normal and odd) and 1.4 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.1 over those on rock sites
    • …
    corecore