753 research outputs found

    A simple model for quantifying change in soil organic C as influenced by tillage and crop rotations on the Canadian prairies

    Get PDF
    Non-Peer ReviewedSimulation models are required for quantifying the impact of crop rotations and tillage on soil organic C dynamics, and for aggregating C sequestration over a relatively large area. However, most current models of soil organic C have been built based on kinetically defined discrete pools with different turnover times. Those pools of soil organic C only exist conceptually. They have not been determined experimentally, thus validation of kinetic models describing soil organic C turnover is usually difficult or not independent from actual measurements. Thus, there is a need to develop a simulation model that can be easily validated and used for estimating future projection of C sequestration under specified management practices. A simple model has been developed to quantify the impact of crop rotations and tillage on soil organic C and validated using long-term field experiments conducted on the Canadian prairies. This simple model required a few input parameters and accurately predicted the change of soil organic C with a relative error of 5% or better. Crop rotation in cereal-dominant cropping systems, affected the amount of soil organic C due to differences in the amount of crop residue inputs. Clay content of soil played a vital role in determining the soil organic C sequestered under conservation tillage compared to tilled systems. This study also showed that the rate constant of soil organic C turnover was about the same for all systems in the drier region of the Canadian prairies, regardless of soil texture and the cropping system

    Associations of inflammatory and hemostatic variables with the risk of recurrent stroke

    Get PDF
    <p><b>Background and Purpose:</b> Several prospective studies have shown significant associations between plasma fibrinogen, viscosity, C-reactive protein (CRP), fibrin D-dimer, or tissue plasminogen activator (tPA) antigen and the risk of primary cardiovascular events. Little has been published on the associations of these variables with recurrent stroke. We studied such associations in a nested case-control study derived from the Perindopril Protection Against Recurrent Stroke Study (PROGRESS).</p> <p><b>Methods:</b> Nested case-control study of ischemic (n=472) and hemorrhagic (n=83) strokes occurring during a randomized, placebo-controlled multicenter trial of perindopril-based therapy in 6105 patients with a history of stroke or transient ischemic attack. Controls were matched for age, treatment group, sex, region, and most recent qualifying event at entry to the parent trial.</p> <p><b>Results:</b> Fibrinogen and CRP were associated with an increased risk of recurrent ischemic stroke after accounting for the matching variables and adjusting for systolic blood pressure, smoking, peripheral vascular disease, and statin and antiplatelet therapy. The odds ratio for the last compared with the first third of fibrinogen was 1.34 (95% CI, 1.01 to 1.78) and for CRP was 1.39 (95% CI, 1.05 to 1.85). After additional adjustment for each other, these 2 odds ratios stayed virtually unchanged. Plasma viscosity, tPA, and D-dimer showed no relationship with recurrent ischemic stroke, although tPA was significant for lacunar and large artery subtypes. Although each of these variables showed a negative relationship with recurrent hemorrhagic stroke, none of these relationships achieved statistical significance.</p> <p><b>Conclusions:</b> Fibrinogen and CRP are risk predictors for ischemic but not hemorrhagic stroke, independent of potential confounders.</p&gt

    Long-term tillage and crop rotation effect on soil aggregation

    Get PDF
    Non-Peer ReviewedTillage and cropping sequences play a key role in controlling soil aggregation. We measured water-stable aggregate (WSA), wind erodible fraction (WEF), and geometric mean diameter (GMD) for six mid to longterm (8 to 25 years) experiments comparing tillage and cropping sequences in the Brown, Dark Brown, and Black Chernozemic soils of Saskatchewan. In the coarse-textured soil, no-tillage (NT) had a higher value of WSA by 49% more than in the wheat-phase of fallow-wheat (F-W), and had a lower value of WEF by 27% less than in the fallow-phase of F-W compared with minimum tillage (MT). In the medium-textured soils, NT had a higher WAS, ranged from 17 to 38%, and a lower WEF, ranged from 37 to 64% compared with conventional tillage (CT), depending on crop rotation systems. The reduced WEF under NT in the medium-textured soils was due mainly to increased GMD. In the fine-textured soils, NT had a higher WSA, ranged from 10 to 19% compared with MT or CT, and a lower WEF by 47% compared with MT only in the heavy clay soil. Change in GMD was not detectable in the light- and fine-textured soils. Continuous cropping compared with rotations containing fallow improved soil physical properties by increasing WSA, reducing WEF in the medium and fine-textured soils, and increasing GMD only in the medium-textured soils. Of the three soil physical properties determined in this study, WSA was the most sensitive to changes in tillage and crop rotations, then WEF and the least GMD

    The probing behaviour of nymphs of Vanduzeea arquata and Enchenopa binotata (Homoptera: Membracidae) on host and non-host plants

    Full text link
    1. Nymphs of Vanduzeea arquata Say have been found to be more host-specific in nature and to show a higher degree of selectivity in host discrimination experiments than nymphs of Enchenopa binotata (Say), It was hypothesized that this differential selectivity would be reflected in the probing behaviour of individuals placed on twigs of host and non-host plants. Probing behaviour was examined by direct observation of nymphs and by sectioning and staining the probed plant tissues. 2. All nymphs probed readily and for extended periods on both host and non-host twigs. E.binotuta nymphs showed no consistent differences in probing behaviour on hosts versus non-hosts, but V.atquuta nymphs were more likely to withdraw their stylets within 60 s when on non-host twigs and produced honeydew only when on their host species. V.urquatu nymphs reached the phloem sieve elements only when on host twigs and broke many cells in peripheral plant tissue layers while probing. E.binotata nymphs broke few cells and often reached the phloem of non-host as well as host plants. 3. Nymphs of V.arquata always reject non-host plants, apparently in the course of probing and prior to encountering the phloem sap. Chemical compounds released from ruptured parenchyma cells may act as probing stimulants or inhibitors. E.binotura nymphs often feed on non-host plants in a non-choice situation; their preferential settling on host twigs in discrimination experiments may reflect a tendency to abandon non-host twigs more readily than host twigs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72791/1/j.1365-2311.1984.tb00840.x.pd

    Jet angular correlation in vector-boson fusion processes at hadron colliders

    Full text link
    Higgs boson and massive-graviton productions in association with two jets via vector-boson fusion (VBF) processes and their decays into a vector-boson pair at hadron colliders are studied. They include scalar and tensor boson production processes via weak-boson fusion in quark-quark collisions, gluon fusion in quark-quark, quark-gluon and gluon-gluon collisions, as well as their decays into a pair of weak bosons or virtual gluons which subsequently decay into ˉ\ell\bar\ell, qqˉq\bar q or gggg. We give the helicity amplitudes explicitly for all the VBF subprocesses, and show that the VBF amplitudes dominate the exact matrix elements not only for the weak-boson fusion processes but also for all the gluon fusion processes when appropriate selection cuts are applied, such as a large rapidity separation between two jets and a slicing cut for the transverse momenta of the jets. We also show that our off-shell vector-boson current amplitudes reduce to the standard quark and gluon splitting amplitudes with appropriate gluon-polarization phases in the collinear limit. Nontrivial azimuthal angle correlations of the jets in the production and in the decay of massive spin-0 and -2 bosons are manifestly expressed as the quantum interference among different helicity states of the intermediate vector-bosons. Those correlations reflect the spin and the CP nature of the Higgs bosons and the massive gravitons.Comment: 47 pages, 7 figures, 10 tables; references added, version to appear in JHE

    Charge asymmetry ratio as a probe of quark flavour couplings of resonant particles at the LHC

    Full text link
    We show how a precise knowledge of parton distribution functions, in particular those of the u and d quarks, can be used to constrain a certain class of New Physics models in which new heavy charged resonances couple to quarks and leptons. We illustrate the method by considering a left-right symmetric model with a W' from a SU(2)_R gauge sector produced in quark-antiquark annihilation and decaying into a charged lepton and a heavy Majorana neutrino. We discuss a number of quark and lepton mixing scenarios, and simulate both signals and backgrounds in order to determine the size of the expected charge asymmetry. We show that various quark-W' mixing scenarios can indeed be constrained by charge asymmetry measurements at the LHC, particularly at 14 TeV centre of mass energy.Comment: 14 pages, 3 figure

    Radiodynamic therapy using TAT peptide‐targeted Verteporfin‐encapsulated PLGA nanoparticles

    Get PDF
    Radiodynamic therapy (RDT) is a recent extension of conventional photodynamic therapy, in which visible/near infrared light irradiation is replaced by a well-tolerated dose of high-energy X-rays. This enables greater tissue penetration to allow non-invasive treatment of large, deep-seated tumors. We report here the design and testing of a drug delivery system for RDT that is intended to enhance intra- or peri-nuclear localization of the photosensitizer, leading to DNA damage and resulting clonogenic cell kill. This comprises a photosensitizer (Verteporfin, VP) incorporated into poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) that are surface-functionalized with a cell-penetrating HIV trans-activator of transcription (TAT) peptide. In addition to a series of physical and photophysical characterization studies, cytotoxicity tests in pancreatic (PANC-1) cancer cells in vitro under 4 Gy X-ray exposure from a clinical 6 MV linear accelerator (LINAC) showed that TAT targeting of the nanoparticles markedly enhances the effectiveness of RDT treatment, particularly when assessed by a clonogenic, i.e., DNA damage-mediated, cell kill.Sandhya Clement, Ayad G. Anwer, Layla Pires, Jared Campbell, Brian C. Wilson and Ewa M. Goldy

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.

    Supersymmetry discovery potential of the LHC at s=\sqrt{s}=10 and 14 TeV without and with missing ETE_T

    Full text link
    We examine the supersymmetry (SUSY) reach of the CERN LHC operating at s=10\sqrt{s}=10 and 14 TeV within the framework of the minimal supergravity model. We improve upon previous reach projections by incorporating updated background calculations including a variety of 2n2\to n Standard Model (SM) processes. We show that SUSY discovery is possible even before the detectors are understood well enough to utilize either ETmissE_T^{\rm miss} or electrons in the signal. We evaluate the early SUSY reach of the LHC at s=10\sqrt{s}=10 TeV by examining multi-muon plus 4\ge4 jets and also dijet events with {\it no} missing ETE_T cuts and show that the greatest reach in terms of m1/2m_{1/2} occurs in the dijet channel. The reach in multi-muons is slightly smaller in m1/2m_{1/2}, but extends to higher values of m0m_0. We find that an observable multi-muon signal will first appear in the opposite-sign dimuon channel, but as the integrated luminosity increases the relatively background-free but rate-limited same-sign dimuon, and ultimately the trimuon channel yield the highest reach. We show characteristic distributions in these channels that serve to distinguish the signal from the SM background, and also help to corroborate its SUSY origin. We then evaluate the LHC reach in various no-lepton and multi-lepton plus jets channels {\it including} missing ETE_T cuts for s=10\sqrt{s}=10 and 14 TeV, and plot the reach for integrated luminosities ranging up to 3000 fb1^{-1} at the SLHC. For s=10\sqrt{s}=10 TeV, the LHC reach extends to mgluino=1.9,2.3,2.8m_{gluino}=1.9, 2.3, 2.8 and 2.9 TeV for msquarkmgluinom_{squark}\sim m_{gluino} and integrated luminosities of 10, 100, 1000 and 3000 fb1^{-1}, respectively. For s=14\sqrt{s}=14 TeV, the LHC reach for the same integrated luminosities is to m_{gluino}=2.4,\3.1, 3.7 and 4.0 TeV.Comment: 34 pages, 25 figures. Revised projections for the SUSY reach for ab^-1 integrated luminosities, with minor corrections of references and text. 2 figures added. To appear in JHE
    corecore