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Abstract

Simulation models are required for quantifying the impact of crop rotations and tillage on soil

organic C dynamics, and for aggregating C sequestration over a relatively large area. However, most current

models of soil organic C have been built based on kinetically defined discrete pools with different turnover

times. Those pools of soil organic C only exist conceptually. They have not been determined experimentally,

thus validation of kinetic models describing soil organic C turnover is usually difficult or not independent

from actual measurements. Thus, there is a need to develop a simulation model that can be easily validated

and used for estimating future projection of C sequestration under specified management practices. A simple

model has been developed to quantify the impact of crop rotations and tillage on soil organic C and validated

using long-term field experiments conducted on the Canadian prairies. This simple model required a few

input parameters and accurately predicted the change of soil organic C with a relative error of 5% or better.

Crop rotation in cereal-dominant cropping systems, affected the amount of soil organic C due to differences

in the amount of crop residue inputs. Clay content of soil played a vital role in determining the soil organic

C sequestered under conservation tillage compared to tilled systems. This study also showed that the rate

constant of soil organic C turnover was about the same for all systems in the drier region of the Canadian

prairies, regardless of soil texture and the cropping system.

Introduction

Agricultural soil as a potential sink for C sequestration has received considerable attention in recent

years because of its potential magnitude of CO2 mitigation and environmental sustainability.  Numerous field

experiments have been conducted on the Canadian prairies for the last 40 years to evaluate the impact of crop

rotations and tillage practices on soil organic C (SOC) (Campbell et al., 1995; Campbell et al., 1996a,b;

Liang et al., 1999a; Janzan et al., 1998). However, quantitative data are still lacking because changes of SOC

are usually slow compared to its large storage within a short term, and high spatial variability. To resolve

these problems, simulation models of SOC dynamics have been developed to facilitate extrapolation of

experimental data from a site-specific to a regional basis. These models vary in complexity, but generally
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have similar structures. Soil organic C has been conceptually defined as a series of pools that consist of a

continuum of decomposition rates (Schimel et al, 1985; Christensen 1996). These pools have been

represented in simulation models as kinetically defined fractions with different rate constants (Jenkinson and

Raynor, 1977; Parton et al., 1987). A major restriction of current simulation models describing SOC turnover

is that the conceptualized pools do not correspond to verifiable fractions and can not be determined

experimentally (Cambardella, 1998; McGill and Bailey, 1999). Because of this, validation of kinetic models

describing SOC turnover is usually difficult or not independent from actual measurements. Therefore, a need

exists to develop a simulation model that can be used to quantify the dynamics of SOC based on verifiable

fractions that can be measured experimentally. The objectives of this study were (1) to develop a simple

model for quantifying changes in SOC under different tillage and crop rotations, and (2) to validate the model

using data collected from some mid- to long-term tillage and crop rotation studies conducted on the Canadian

prairies.

Model Development

The amount of SOC depends on the rate of SOC that decomposes and the amount of crop residues

that is returned to the soil. At any particular time the amount of SOC can be divided into two components,

one derived from native SOC and the other from more recent crop residue inputs since the initiation of

experiment or any other reference time. This can be expressed as follows:

Total SOC = Native SOC + SOC derived from crop residue

Under certain climate and management practices, there is a balance between the loss of SOC through

decomposition and the gain of SOC through crop residue return that is called the equilibrium level of SOC.

The decomposition of SOC can be simply described by a first-order exponential equation

 (Eqn. 1)

where SOC0 and SOCt are the amount of SOC at t = 0 and t = t (years), respectively and k is the rate constant.

Although changes in native SOC over time cannot be accurately determined experimentally, the amount of

SOC derived from more recent crop residues can be estimated using stable or radioactive C isotope. When

the SOC reaches an equilibrium level under certain conditions the rate constant can be easily calculated.

In order to estimate the accumulation of SOC over time after residue input, Voroney et al. (1989)

determined the coefficients and decomposition rate constants in a microplot field study conducted on Sceptre

clay in semiarid southwestern Saskatchewan.  These coefficients and rate constants were based on a study

in which 
14

C-labeled wheat straw for a fallow-wheat-wheat-wheat rotation was incorporated into the soil and
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the C monitored annually for 10 years: 

 (Eqn. 2)

where, y is the proportion of residue C remaining in the soil and t is years since residue application. Although

this study was carried out on two soils at the two different locations in Saskatchewan, the decomposition and

rate constants of wheat straw were generally similar. Jenkinson (1977) also obtained a similar equation at

Rothamsted in an experiment using 14
C-labeled ryegrass over a  ten year period. Liang et al. (1998) conducted

field studies with continuous corn varying from 3 to 12 years in Ontario and Quebec, and reported that there

were large differences in crop residue-C retention in soil as determined by 13C natural abundance method.

Fine-textured soils retained a greater proportion of crop residues than coarse-textured soils (Fig. 1). In this

paper we estimated SOC derived from crop residues using the results of Liang et al. (1998). Therefore, to

quantify the amount of SOC with a certain cropping system under conventional tillage, we propose the

following equation

(Eqn. 3)SOC SOC e kt F CRCt

t

= − + ∑0

1

where F (%) is the fraction of crop residue-C retained in the soil, which is a simple function of silt plus clay

content of soil (F = 15.6 - 0.205X + 0.00457X2 , X = silt plus clay (%)), and CRC is the total amount of crop

residue-C returned to the soil from t = 1 to t = t years (Mg C ha-1).

In order to derive the rate constant of SOC we used a crop rotation study that was conducted on the

Swinton loam in the semiarid region of southwest Saskatchewan from 1967 to 1996. The soil was broken

from native prairie for annual crop production in 1911, and had been under a traditional fallow-wheat

rotation prior to 1966. Detailed treatments and managements practices have been reported elsewhere

(Campbell et al., 1999). During the 30-yr period amounts of SOC in the top 15-cm soil were measured seven

times, and values of SOC for the FW(N+P) were plotted on Fig. 2. It is clear that SOC remained relatively

unchanged at approximately 30.5 Mg C ha-1 from 1967 to 1990, but gradually increased to 34 Mg C ha-1 in

1996. This increase in SOC has been attributed to higher crop yields resulting from above average

precipitation in early 1990's (Campbell et al., 1999). It is assumed that the equilibrium level of SOC for the

FW rotation  was 30.5 Mg C ha-1, and higher amounts of SOC in 1990's resulted from additional crop residue
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inputs because of higher crop yields.  Total amounts of crop straw plus estimated roots returned to the soil

by the FW rotation during the 30-yr period were 86 Mg ha-1, and approximately 39 Mg C ha-1. Based on the

retention of crop residues of 22.4% for the Swinton loam, it is estimated that 8.7 Mg C ha-1 in the soil derived

from crop residues during the 30-yr period. The amount of difference in SOC between the equilibrium level

(30.5 Mg C ha-1) and the amount of SOC measured in 1996 (34.0 Mg C ha-1) should be subtracted from the

amount of SOC derived from crop residues (8.7 Mg C ha-1). This net amount of crop residue derived C (5.2

Mg C ha-1) is the amount of native SOC that was lost by decomposition during the 30-yr period (assuming

no erosion occurred). Thus, the rate constant can be calculated based on Equation (1)

In the Dark Brown soil zone at Lethbridge, Alberta, the amount of SOC for the continuous wheat

and fallow-wheat rotations has been measured five times during the 37-yr experiment (Fig. 3). It can be seen

that the amount of SOC under the FW reached the equilibrium level at 29.0 Mg C ha-1 in 1974. The total

amount of crop residue C returned to the soil was 16.9 Mg C ha-1 from 1974 to 1991 (Campbell et al., 1999).

Assuming the retention of crop residues was 17.8%, then the amount of SOC derived from crop residues

during this period was 3.0 Mg C ha-1. Therefore, the rate constant for the Lethbridge FW soil was 0.0064 yr-1.

Because measurements of SOC were only made twice during the last 10 years of the 30-yr

experiment in the sub-humid region of the prairie at Indian Head, Saskatchewan, the equilibrium level of

SOC could not be determined with certainty. However, we assumed the equilibrium SOC level at 29.0 Mg

C ha-1 in the 0-15-cm soil, which was the value observed for the FW rotation with fertilization (Table 4).

Based on other parameters provided in Table 4, we can calculate the rate constant for the Indian Head clay

soil to be 0.0173 yr-1.

The impact of tillage on SOC was quantified empirically based on soil texture. The relative annual

increase in SOC under different tillage systems was calculated as follows

        (Eqn. 4)

where RAISOC (% yr-1) was the relative annual increase in SOC per year under NT; SOCNT was the amount

of SOC under NT (Mg C ha-1 in the 0-15-cm soil); SOCCT was the amount of SOC under CT or MT (Mg C

ha-1 in the 0-15-cm soil), and Year was number of years since the establishment of tillage treatments. Liang

et al. (1999a,b) analyzed results from a number of short to long-term field experiments conducted in
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Saskatchewan, and concluded that RAISOC for NT compared with tilled systems was directly related to clay

content (Fig. 4). Thus, the amount of SOC gains under NT, or tillage factor (TF, Mg C ha-1) can be expressed

as

(Eqn. 5)

where t is number of years under NT. The relative annual increase in SOC under NT is a function of clay

content as defined by RAISOC = -0.30 + 0.024 Clay.

It is also assumed in this paper that the effects of crop rotations and tillage on SOC are independent

of each other (Liang et al., 1999a). Thus, to quantify the impact of both tillage and crop rotations on SOC

it becomes a simple addition of (Eqn. 3) and (Eqn. 5).

Materials and Methods

A number of crop rotations and tillage studies were conducted in various ecozones on the Canadian

prairies. These studies varied in length from mid-term (11 yrs) to long -term (more than 30 yrs). A brief

description of studies used in this paper either for model development or validation is provided.

Four field experiments have been conducted in the Brown soil zone at or near Swift Current,

Saskatchewan. A long-term crop rotation study was initiated in 1967 on a Swinton loam with conventional

tillage (Campbell et al., 1999). Crop rotations consisted of continuous wheat with P (CW(P)), fall rye-wheat-

wheat with N and P (RWW(N+P)), wheat-lentil with N and P (WL(N+P)), fallow-wheat with N and P

(FW(N+P)), fallow-wheat-wheat with N (FWW(N)), fallow-wheat-wheat with P (FWW(P)), and fallow-

wheat-wheat with N and P (FWW(N+P)). Three tillage crop rotation studies were also initiated in 1982 on

a Swinton loam, and in 1983 on a Hatton fine sandy loam and on a Sceptre clay (Campbell et al., 1995;

Campbell et al., 1996a,b). Experimental designs for these three studies were similar, and contained FW and

CW rotations, and CT and NT. In general, CT in the Brown soil zone consisted of fall tillage after crop,

preseeding tillage, and tillage as required for weed control during fallow. No tillage consisted of low

disturbance direct seeding and weed control with herbicides. More detailed description of tillage and

management practices have been provided elsewhere (Campbell et al., 1995; Campbell et al., 1996a, b; Liang

et al., 1999a,b).

The 37-yr experiment in the Dark Brown soil zone at Lethbridge, Alberta was established in 1951

on land that had been broken from tall and short grass prairie in 1910. Crop rotations contained mixed crop

rotations that included legumes (Bremer at al., 1994). However, only two rotations, CW and FW, are

discussed in this paper.
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The 40-yr experiment in the Black soil zone at Indian Head, Saskatchewan was initiated in 1957, and

contained a number of crop rotations including FW, FWW and CW with N +P and also unfertilized. Crop

yields data are available for the entire experimental period, but SOC in the 0-15-cm soil was only measured

in 1987 and 1996. Thus, SOC and crop residue-C input data from 1987 to 1996 are used to validate the

model. More detailed information on soil properties, crop rotations and tillage systems used for the present

study is provided (Table 1). General climatic information at Swift Current and Indian Head, Saskatchewan,

and Lethbridge, Alberta, is listed (Table 2).

For most sites, actual straw yields were determined each year. For sites where only grain yields were

measured straw yields are calculated based on a fixed harvest index of 40%. We estimated the potential C

input from crop residues by assuming the root/straw ratio was 0.59 (Campbell et al., 1977) and the C

concentration of tissues was 45% (Millar et al. 1936).

Model Validation

The amount of crop residue C retained in the Hatton fine sandy loam, Swinton loam and Sceptre clay

was estimated using the methods of Voroney et al. (1989) and Liang et al. (1998), and shown in Table 3.

Both methods estimated about the same amount of SOC derived from crop residues for the medium-textured

soils, but the method of Voroney et al. (1989) tended to overestimate the amount of SOC derived from crop

residues for the light-textured soils, and likewise underestimate the amount of SOC derived from crop

residues for the fine-textured soils. This is because the method of Voroney et al. (1989) did not account for

differences in soil texture. We validated the model using independent measurements, either from the same

experiments from which the rate constant was derived on, but different crop rotations or from different

experiments. The tillage component of the model was also validated using various tillage studies conducted

in southwest Saskatchewan.

The rate constant of 0.0062 yr-1 was derived from the 30-yr crop rotation experiment conducted on

the Swinton loam under conventional tillage with the traditional FW rotation. We applied the same rate

constant to the CW for the same study. The total straw yields during the 30 years for the CW were 78.2 Mg

ha-1. The amount of crop residue C retained in the 30-yr period was 12.5 Mg C ha-1. The amount of native

SOC decomposed from 30.5 Mg C ha-1 with a rate constant of 0.0062 yr-1 for 30 years was 25.3 Mg C ha-1.

The amount of observed SOC in 1996 was 39.5 Mg C ha-1. Thus, the model underestimated about 4% of the

actual observed SOC.

We also applied the rate constant of 0.0064 yr-1 which was derived from a 37-yr study under FW at

Lethbridge, Alberta to the CW rotation in the same study. The amount of crop residue C for CW from 1974

to 1991 were 20.4 Mg ha-1. The amount of SOC derived from crop residues during this period was 3.6 Mg
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C ha-1. The amount of native SOC decomposed from 31.6 Mg C ha-1 with a rate constant of 0.0064 yr-1 for

17 years was 28.3 Mg C ha-1. The measured SOC for CW in 1991 was 31.7 Mg C ha-1. Thus, the simulated

SOC value was about the same as that of the actual observed value. It is clear that although the rate constant

was derived from the FW rotation for the Swift Current and Lethbridge studies, this same rate constant can

be used for the other rotations at the same site such as CW, suggesting that the native SOC decomposed in

a similar rate regardless of the difference in crop rotations. This is consistent with the finding of Gregorich

et al. (1996), who reported that after a 35-yr of continuous corn SOC increased with N fertilization compared

with non-N fertilization. This increased SOC with N fertilized treatments derived from C4 source, and the

native SOC from C3 source for both fertilized and non-fertilized treatments remained the same.

The rate constant of the native SOC for the Swinton loam and the Lethbridge clay loam was almost

identical even though the climatic factors such as annual mean temperature, annual precipitation and

moisture deficit for the two locations were quite different. It seems that the higher annual mean temperature,

higher annual precipitation and less moisture deficit would favor the decomposition of the native SOC in the

Lethbridge clay loam, thus a greater rate constant would be expected. However, this is not supported by our

observations. Perhaps, the climatic differences between the two sites are not large enough to cause any

significant change in the rate constant. On the other hand, the rate constant derived from the drier region of

the prairies cannot be used for the sub-humid region of the prairies. In fact, the rate constant derived from

the Indian Head clay is nearly triple that of the Swinton loam. We would expect that the sub-humid

environment may favor the decomposition, but moisture deficit alone may not provide satisfactory

explanation. Perhaps, a combination of moisture deficit and temperature affects the rate constant for the sub-

humid region of the prairies.

In the Brown soil zone, the model correctly predicted the effect of crop rotations on SOC for the

Hatton fine sandy loam, Swinton loam and Sceptre clay, and the tillage factor for the Swinton loam and

Sceptre clay (Table 3). The model tended to underestimated the tillage factor for the sandy soil. This is

because the model does not account for any additional benefit of C sequestration as a result of reduced wind

erosion on the light-textured soil under NT (Liang et al., 1999a). Except for the sandy soil, the model

predicted the actual amount of SOC with a relative error of 5% or better. In the Black soil zone, the model

accurately predicted the changes in SOC, and the differences between simulated and observed values varied

from -0.3 to 0.8 Mg C ha-1 for the majority of the treatments except for the CW(F), where the model

overestimated the amount of SOC by 3.6 Mg C ha-1 (Table 4). However, it is not clear why the high

productivity level associated with the CW(F) could not sustain the SOC level during the last 10 years of the

experiment.



It should be recognized that this model is most suitable for short- to mid-term use, typically from 5

to 30 years because most coefficients for the model were derived from mid-term studies. In addition, this

model may be extended for use in crop rotations containing legumes in a similar climatic condition, if proper

coefficients such as shoot/root ratios can be assigned. However, this assumption can not be validated due to

lack of available data.

Conclusions

This model correctly predicted the absolute changes in SOC over time within a short or mid-term

under a cereal-dominant crop rotation as well as the relative change in SOC among cropping systems on the

Canadian prairies, especially for the drier region of the prairies. This model also reveals the importance of

soil texture and the quantity of crop residues that are returned to the soil in controlling the level of SOC,

probably the two most influential factors besides erosion. The relationship between the proportion of crop

residue-C retained in the soil and soil texture may be independent of climatic factors because the

decomposition rate constant or retention of cereal residues in a similar soil texture was almost the same

regardless of where the studies were carried out whether in Rothamsted, England (Jenkinson, 1977),

Saskatchewan (Voroney et al., 1989), or Ontario and Quebec (Liang et al., 1998). Note that the rate constant

for the drier region of the prairies in the Brown and Dark Brown soil zone is about the same regardless of soil

texture even though the amount of SOC in different-textured soils varied greatly. This is probably because

the readily biodegradable SOC, in proportion to the total amount of SOC, in a similar climatic region, is about

the same. This would greatly enhance the model applicability. The tillage factor in this model although

derived empirically, should be widely applicable on the Canadian prairies because the initial studies covered

a wide range of climatic zones, soil texture and duration of experiments. This simple model will provide a

useful tool not only for soil scientists in the areas of assessing soil sustainability and C sequestration, but also

for policymakers wishing to project greenhouse gas emission reduction through improved management

practices of agricultural soils.
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Table 1. List of field experiments, soil properties, crop rotations and tillage studies conducted in
Saskatchewan and Alberta, Canada

Soil Township Soil texture Initial 
SOC

Years
of study

Crop
rotation

Tillage

Sand Silt Clay

---------- % ----------- - Mg C ha-1 - -- yr --

Swinton
loam

Swift
Current,

SK

32.6 39.8 27.6 28.0 12 CW,
FW

CT, NT

Swinton
loam

Swift
Current,

SK

32.6 39.8 27.6 30.5 30 CW,
FW

CT

Hatton
fine sandy

loam

Cantuar,
SK

70.8 13.9 15.3 18.3 11 CW,
FW

CT, NT

Sceptre
clay

Stewart
Valley, SK

25.7 31.6 42.7 25.6 11 CW,
FW

CT, NT

Lethbridge
clay loam

Lethbridge,
AB

46.0 28.0 26.0 29.0 37 CW,
FW

CT

Indian
Head clay

Indian
Head, SK

16.3 20.6 63.1 See Table 3 40 CW,
FW

CT



Table 2. Mean annual windspeed, temperature, precipitation, calculated potential evaporation (ETP), and
moist deficit at Swift Current and Indian Head, Saskatchewan, and Lethbridge, Alberta

Location Wind Temperature Precipitation ETP Moisture
deficita

-- km.h-1 -- ----  oC --- ------------ mm ----------

Brown soil zone

Swift Current 22.9 3.3 334 729 395

Dark Brown soil zone

Lethbridge 20.4 5.0 413 681 268

Black soil zone

Indian Head 15.8 2.0 427 607 180
a Potential evaporation minus mean annual precipitation (Campbell et al., 1990)



Table 3. Validation of model using soil organic C data collected from various tillage and crop rotations
studies conducted in various locations of Saskatchewana.

Soil CW (CT) CW(NT) FW(CT) FW(NT)

------------------ Mg ha-1 ------------------

Hatton fine sandy loam (1983 - 1993)

Straw yields 17.4 17.9 18.0 18.9

SOC derived from crop residues estimated
from Voroney et al. (1989)

2.8 3.0 2.9 3.1

Retained SOC estimated from Liang et al.
(1998)

1.7 1.8 1.8 1.9

Native SOC 17.1 17.1 17.1 17.1

Tillage factor 0.0 0.2 0.0 0.2

Native SOC + Retained C + Tillage factor 18.8 19.1 18.9 19.2

Observed SOC 18.6 20.4 20.0 20.6

Swinton loam (1982 - 1993)

Straw yields 34.5 34.4 21.8 20.9

SOC derived from crop residues estimated
from Voroney et al. (1989)

5.0 5.0 3.6 3.0

Retained SOC estimated from Liang et al.
(1998)

5.5 5.5 3.5 3.3

Native SOC 26.0 26.0 26.0 26.0

Tillage factor 0 1.3 0 1.3

Native SOC + Retained C + Tillage factor 31.5 32.8 29.5 30.6

Observed SOC 30.3 33.2 29.0 29.5



Table 3 (Cont’)

Soil CW (CT) CW(NT) FW(CT) FW(NT)

------------------ Mg ha-1 ------------------

Sceptre clay (1983 - 1993)

Straw yields 23.1 23.8 21.3 18.3

SOC derived from crop residues estimated
from Voroney et al. (1989)

4.1 4.2 4.0 3.4

Retained SOC estimated from Liang et al.
(1998)

4.1 4.3 3.9 3.3

Native SOC 23.9 23.9 23.9 23.9

Tillage factor 0.0 2.2 0.0 2.1

Native SOC + Retained C + Tillage factor 28.0 30.4 27.8 29.3

Observed SOC 27.5 30.5 25.5 30.7
a CW=continuous wheat, FW=fallow-wheat, CT=conventional tillage, and NT=no-tillage



Table 4. Effects of crop rotations on soil organic C for the last 10 years of the 40-yr experiment from 1957
to 1996 at Indian Head, Saskatchewana 

Crop rotations CW (F) CW(UF) FWW(F) FWW(UF) FW(F) FW(UF)

------------------ Mg ha-1 ------------------

 Straw yields 38.1 13.4 28.6 13.5 21.3 13.0

Retained SOC estimated from
Liang et al. (1998)

8.2 2.9 6.1 2.9 4.6 2.8

Measured SOC in 1987 34.5 30.8 29.9 29.8 29.1 28.8

Native SOC, k=0.0173 yr-1 29.0 25.9 25.1 25.0 24.5 24.2

Native SOC + Retained C 37.2 28.8 31.2 27.9 28.7 27.0

Observed SOC in 1996 33.6 28.0 31.1 28.2 28.7 26.2
a CW=continuous wheat, FW=fallow-wheat, FWW=fallow-wheat-wheat, F=fertilization, and UF=no
fertilization
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Fig. 1. Retention of corn residue-C vs clay + silt content of soil (redrawn after Liang et al., 1998)
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Fig. 2. Dynamics of soil organic C for the fallow-wheat rotation in a 30-yr experiment conducted at Swift
Current, Saskatchewan (redrawn after Campbell et al., 1999)
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Fig. 3. Dynamics of soil organic C under fallow-wheat and continuous wheat in a 37-yr experiment conducted
at Lethbridge, Alberta (adapted from Campbell et al., 1999)



Fig. 4. Relative annual increase in soil organic C under no-tillage as influenced by the clay content of soil
from 8 field studies conducted on the Canadian prairie (adapted from Liang et al., 1999)
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