211 research outputs found

    Gluon Fusion induced Zg and Zgg Productions in the Standard Model at the LHC

    Full text link
    We report calculations of the gluon induced Zg and Zgg productions in the Standard Model at the LHC operating at both 7 TeV and 14 TeV collision energy. We present total cross sections and differential distributions of the processes and compare them with the leading and next-to-leading order QCD pp -> Z+1 jet, Z+2 jets results. Our results show that the gluon induced Zg and Zgg productions contribute to pp -> Z+1 jet, Z+2 jets at 1% level.Comment: 8 pages, 5 figure

    Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme

    Get PDF
    We present the calculation of the full next-to-leading order (NLO) QCD corrections to Higgs boson pair production via gluon fusion at the LHC, including the exact top-mass dependence in the two-loop virtual and one-loop real corrections. This is the first independent cross-check of the NLO QCD corrections presented in the literature before. Our calculation relies on numerical integrations of Feynman integrals, stabilised with integration-by-parts and a Richardson extrapolation to the narrow width approximation. We present results for the total cross section as well as for the invariant Higgs-pair-mass distribution at the LHC, including for the first time a study of the uncertainty due to the scheme and scale choice for the top mass in the loops

    Full NLO QCD predictions for Higgs-pair production in the 2-Higgs-doublet model

    Get PDF
    After the discovery of the Higgs boson in 2012 at the CERN Large Hadron Collider (LHC), the study of its properties still leaves room for an extended Higgs sector with more than one Higgs boson. 2-Higgs doublet models (2HDMs) are well-motivated extensions of the Standard Model (SM) with five physical Higgs bosons: two CP-even states h and H, one CP-odd state A, and two charged states H±H^{\pm}. In this letter, we present the calculation of the full next-to-leading order (NLO) QCD corrections to hH and AA production at the LHC in the 2HDM at small values of the ratio of the vacuum expectation values, tan βtan\space\beta, including the exact top-mass dependence everywhere in the calculation. Using techniques applied in the NLO QCD SM Higgs pair production calculation, we present results for the total cross section as well as for the Higgs-pair-mass distribution at the LHC. We also provide the top-quark scale and scheme uncertainties which are found to be sizeable

    Full NLO QCD corrections to Higgs-pair production in the Standard Model and beyond

    Get PDF
    Higgs-pair production is one of the targets of the high-luminosity LHC and of future hadron colliders, as it allows for a direct probe of the trilinear Higgs coupling and hence of the mechanism behind electroweak symmetry breaking. This contribution focuses on the impact of the full next- to-leading order QCD corrections to Higgs-pair production via gluon fusion, the main production mechanism at hadron colliders, in the Standard Model and in Two-Higgs-Doublet models. The uncertainties due to the top-mass scale-and-scheme choice will be discussed

    NLO QCD corrections to Higgs boson pair production

    Get PDF
    In this contribution the next-to-leading (NLO) QCD corrections to Higgs boson pair production are discussed. A brief sketch of the calculation is given. The differential cross section as a function of the invariant Higgs pair mass and the total hadronic cross section are presented. Furthermore, the uncertainties not only from the renormalisation and factorisation scales but also the uncertainties due to the scheme-and-scale choice of the top mass are shown. In addition, the effects of varying the Higgs self-coupling strength on the cross section are investigated

    Gluon-fusion contributions to Phi + 2 Jet production

    Full text link
    In high energy hadronic collisions a scalar or pseudoscalar Higgs boson, Phi=H,A, can be efficiently produced via gluon fusion, which is mediated by heavy quark loops. We here consider double real emission corrections to Phi=A production, which lead to a Higgs plus two-jet final state, at order alpha_s^4. Full quark mass effects are considered in the calculation of scattering amplitudes for the CP-odd Higgs boson A, as induced by quark triangle-, box- and pentagon-diagrams. They complement the analogous results for a CP-even Higgs boson H in Ref.[1]. Interference effects between loops with top and bottom quarks as well as between CP-even and CP-odd couplings of the heavy quarks are fully taken into account.Comment: 20 pages, 11 figure

    Release Note -- Vbfnlo-2.6.0

    Full text link
    Vbfnlo is a flexible parton level Monte Carlo program for the simulation of vector boson fusion (VBF), double and triple vector boson (plus jet) production in hadronic collisions at next-to-leading order (NLO) in the strong coupling constant, as well as Higgs boson plus two jet production via gluon fusion at the one-loop level. This note briefly describes the main additional features and processes that have been added in the new release -- Vbfnlo Version 2.6.0. At NLO QCD diboson production (W\gamma, WZ, ZZ, Z\gamma and \gamma\gamma), same-sign W pair production via vector boson fusion and the process W\gamma\gamma j have been implemented (for which one-loop tensor integrals up to six-point functions are included). In addition, gluon induced diboson production can be studied separately at the leading order (one-loop) level. The diboson processes WW, WZ and W\gamma can be run with anomalous gauge boson couplings, and anomalous couplings between a Higgs and a pair of gauge bosons is included in WW, ZZ, Z\gamma and \gamma\gamma diboson production. The code has also been extended to include anomalous gauge boson couplings for single vector boson production via VBF, and a spin-2 model has been implemented for diboson pair production via vector boson fusion.Comment: 14 pages, 6 tables; new code available at http://www-itp.particle.uni-karlsruhe.de/vbfnlo
    • …
    corecore