235 research outputs found

    Actin polymerization-dependent activation of Cas-L promotes immunological synapse stability

    Get PDF
    This work was supported by National Institutes of Health Common Fund through a Nanomedicine Development Center PN2EY016586 (MLD, MPS). OH and KA were Cas-L coordinates T-cell actin cytoskeleton 2 supported by NIH grants R01 AI068963-01A2 and R01 AI088106-01A1. The Wellcome Trust and the Kennedy Institute of Rheumatology Trust supported MLD

    A scoping review of care trajectories across multiple settings for persons with dementia

    Get PDF
    Multiple transitions across care settings can be disruptive for older adults with dementia and their care partners, and can lead to fragmented care with adverse outcomes. This scoping review was conducted to identify and classify care trajectories across multiple settings for people with dementia, and to understand the prevalence of multiple transitions and associated factors at the individual and organizational levels. Searches of three databases, limited to peer-reviewed studies published between 2007 and 2017, provided 33 articles for inclusion. We identified 26 distinct care trajectories. Common trajectories involved hospital readmission or discharge from hospital to long-term care. Factors associated with transitions were identified mainly at the level of demographic and medical characteristics. Findings suggest a need for investing in stronger community-based systems of care that may reduce transitions. Further research is recommended to address knowledge gaps about complex and longitudinal care trajectories and trajectories experienced by sub-populations of people living with dementia

    Navigating Mealtimes to Meet Public Health Mandates in Long-Term Care During COVID-19: Staff Perspectives

    Get PDF
    Context: Mealtimes in long-term care (LTC) settings play a pivotal role in the daily lives of residents. The COVID-19 pandemic and the required precautionary infection control mandates influenced many aspects of resident care within LTC homes, including mealtimes. Limited research has been conducted on how mealtimes in LTC were affected during the pandemic from staff perspectives. Objective: To understand the experiences of LTC staff on providing mealtimes during the pandemic. Methods: Semi-structured telephone interviews were conducted with 22 staff involved with mealtimes between February and April 2021. Transcripts were analysed using interpretive description. Findings: Three themes emerged from the analysis: (1) recognizing the influence of homes’ contextual factors. Home size, availability of resources, staffing levels and resident care needs influenced mealtime practices during the pandemic; (2) perceiving a compromised mealtime experience for residents and staff. Staff were frustrated and described residents as being dissatisfied with mealtime and pandemic-initiated practices as they were task-focused and socially isolating and (3) prioritizing mealtimes while trying to stay afloat. An ‘all hands-on deck’ approach, maintaining connections and being adaptive were strategies identified to mitigate the negative impact of the mandates on mealtimes during the pandemic. Limitations: Perspectives were primarily from nutrition and food service personnel. Implications: Overly restrictive public health measures resulted in mealtime practices that prioritized tasks and safety over residents’ quality of life. Learning from this pandemic experience, homes can protect the relational mealtime experience for residents by fostering teamwork, open and frequent communication and being flexible and adaptive

    Searching the protein structure database for ligand-binding site similarities using CPASS v.2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent analysis of protein sequences deposited in the NCBI RefSeq database indicates that ~8.5 million protein sequences are encoded in prokaryotic and eukaryotic genomes, where ~30% are explicitly annotated as "hypothetical" or "uncharacterized" protein. Our Comparison of Protein Active-Site Structures (CPASS v.2) database and software compares the sequence and structural characteristics of experimentally determined ligand binding sites to infer a functional relationship in the absence of global sequence or structure similarity. CPASS is an important component of our Functional Annotation Screening Technology by NMR (FAST-NMR) protocol and has been successfully applied to aid the annotation of a number of proteins of unknown function.</p> <p>Findings</p> <p>We report a major upgrade to our CPASS software and database that significantly improves its broad utility. CPASS v.2 is designed with a layered architecture to increase flexibility and portability that also enables job distribution over the Open Science Grid (OSG) to increase speed. Similarly, the CPASS interface was enhanced to provide more user flexibility in submitting a CPASS query. CPASS v.2 now allows for both automatic and manual definition of ligand-binding sites and permits pair-wise, one versus all, one versus list, or list versus list comparisons. Solvent accessible surface area, ligand root-mean square difference, and Cβ distances have been incorporated into the CPASS similarity function to improve the quality of the results. The CPASS database has also been updated.</p> <p>Conclusions</p> <p>CPASS v.2 is more than an order of magnitude faster than the original implementation, and allows for multiple simultaneous job submissions. Similarly, the CPASS database of ligand-defined binding sites has increased in size by ~ 38%, dramatically increasing the likelihood of a positive search result. The modification to the CPASS similarity function is effective in reducing CPASS similarity scores for false positives by ~30%, while leaving true positives unaffected. Importantly, receiver operating characteristics (ROC) curves demonstrate the high correlation between CPASS similarity scores and an accurate functional assignment. As indicated by distribution curves, scores ≥ 30% infer a functional similarity. Software URL: <url>http://cpass.unl.edu</url>.</p

    A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues

    Get PDF
    Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions. Herein, we characterized thiol oxidoreductases at a structural level and developed an algorithm that can recognize these enzymes by (i) analyzing amino acid and secondary structure composition of the active site and its similarity to known active sites containing redox Cys and (ii) calculating accessibility, active site location, and reactivity of Cys. For proteins with known or modeled structures, this method can identify proteins with catalytic Cys residues and distinguish thiol oxidoreductases from the enzymes containing other catalytic Cys types. Furthermore, by applying this procedure to Saccharomyces cerevisiae proteins containing conserved Cys, we could identify the majority of known yeast thiol oxidoreductases. This study provides insights into the structural properties of catalytic redox-active Cys and should further help to recognize thiol oxidoreductases in protein sequence and structure databases

    Protein Docking by the Interface Structure Similarity: How Much Structure Is Needed?

    Get PDF
    The increasing availability of co-crystallized protein-protein complexes provides an opportunity to use template-based modeling for protein-protein docking. Structure alignment techniques are useful in detection of remote target-template similarities. The size of the structure involved in the alignment is important for the success in modeling. This paper describes a systematic large-scale study to find the optimal definition/size of the interfaces for the structure alignment-based docking applications. The results showed that structural areas corresponding to the cutoff values <12 Å across the interface inadequately represent structural details of the interfaces. With the increase of the cutoff beyond 12 Å, the success rate for the benchmark set of 99 protein complexes, did not increase significantly for higher accuracy models, and decreased for lower-accuracy models. The 12 Å cutoff was optimal in our interface alignment-based docking, and a likely best choice for the large-scale (e.g., on the scale of the entire genome) applications to protein interaction networks. The results provide guidelines for the docking approaches, including high-throughput applications to modeled structures

    X-Linked thrombocytopenia causing mutations in WASP (L46P and A47D) impair T cell chemotaxis

    Get PDF
    BACKGROUND: Mutation in the Wiskott-Aldrich syndrome Protein (WASP) causes Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN). The majority of missense mutations causing WAS and XLT are found in the WH1 (WASP Homology) domain of WASP, known to mediate interaction with WIP (WASP Interacting Protein) and CIB1 (Calcium and Integrin Binding). RESULTS: We analyzed two WASP missense mutants (L46P and A47D) causing XLT for their effects on T cell chemotaxis. Both mutants, WASP(R)(L46P) and WASP(R)(A47D) (S1-WASP shRNA resistant) expressed well in Jurkat(WASP-KD) T cells (WASP knockdown), however expression of these two mutants did not rescue the chemotaxis defect of Jurkat(WASP-KD) T cells towards SDF-1α. In addition Jurkat(WASP-KD) T cells expressing these two WASP mutants were found to be defective in T cell polarization when stimulated with SDF-1α. WASP exists in a closed conformation in the presence of WIP, however both the mutants (WASP(R)(L46P) and WASP(R)(A47D)) were found to be in an open conformation as determined in the bi-molecular complementation assay. WASP protein undergoes proteolysis upon phosphorylation and this turnover of WASP is critical for T cell migration. Both the WASP mutants were found to be stable and have reduced tyrosine phosphorylation after stimulation with SDF-1α. CONCLUSION: Thus our data suggest that missense mutations WASP(R)(L46P) or WASP(R)(A47D) affect the activity of WASP in T cell chemotaxis probably by affecting the turnover of the protein. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12929-014-0091-1) contains supplementary material, which is available to authorized users

    S100B as a potential biomarker and therapeutic target in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) pathology is characterized by neuroinflammation and demyelination. Recently, the inflammatory molecule S100B was identified in cerebrospinal fluid (CSF) and serum of MS patients. Although seen as an astrogliosis marker, lower/physiological levels of S100B are involved in oligodendrocyte differentiation/maturation. Nevertheless, increased S100B levels released upon injury may induce glial reactivity and oligodendrocyte demise, exacerbating tissue damage during an MS episode or delaying the following remyelination. Here, we aimed to unravel the functional role of S100B in the pathogenesis of MS. Elevated S100B levels were detected in the CSF of relapsing-remitting MS patients at diagnosis. Active demyelinating MS lesions showed increased expression of S100B and its receptor, the receptor for advanced glycation end products (RAGE), in the lesion area, while chronic active lesions displayed increased S100B in demyelinated areas with lower expression of RAGE in the rim. Interestingly, reactive astrocytes were identified as the predominant cellular source of S100B, whereas RAGE was expressed by activated microglia/macrophages. Using an ex vivo demyelinating model, cerebral organotypic slice cultures treated with lysophosphatidylcholine (LPC), we observed a marked elevation of S100B upon demyelination, which co-localized mostly with astrocytes. Inhibition of S100B action using a directed antibody reduced LPC-induced demyelination, prevented astrocyte reactivity and abrogated the expression of inflammatory and inflammasome-related molecules. Overall, high S100B expression in MS patient samples suggests its usefulness as a diagnostic biomarker for MS, while the beneficial outcome of its inhibition in our demyelinating model indicates S100B as an emerging therapeutic target in MS.This work was supported by Medal of Honor L’Oréal for Women in Science (FCT, UNESCO, L’Óreal) and innovation grant (Ordem dos Farmacêuticos) to AF, a post-doctoral grant from Fundação para a Ciência e Tecnologia (FCT-SFRH/BPD/96794/2013) and a DuPré Grant from the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) to AB, and by FCT-Pest- OE/SAU/UI4013 to iMed.ULisboa.info:eu-repo/semantics/publishedVersio
    corecore