591 research outputs found

    The Kentucky Redistricting Problem: Mixed-Integer Programming Model: Working Paper Series--03-04

    Get PDF
    The goal of the voter-redistricting problem is to partition a state into districts so that the districts have equal populations, are contiguous and compact. Each state has a different variation of this problem due to different state laws, history in the courts and political climate. There has been increasing pressure to remove the partisanship from this process and make it a more technical issue. We focus on the non-political aspects of this problem as defined in the state of Kentucky after the 1990 census. The goal of this redistricting problem is to minimize the number of times that the counties must be divided subject to equal population districts. We present two variations of a mixed-integer programming model. The performance of these models is tested on 12 problems. The tradeoff between the minimum number of cuts and contiguity is examined. Limitations of the models are described

    The European Network for Translational Research in Atrial Fibrillation (EUTRAF): objectives and initial results.

    Get PDF
    Atrial fibrillation (AF) is the most common sustained arrhythmia in the general population. As an age-related arrhythmia AF is becoming a huge socio-economic burden for European healthcare systems. Despite significant progress in our understanding of the pathophysiology of AF, therapeutic strategies for AF have not changed substantially and the major challenges in the management of AF are still unmet. This lack of progress may be related to the multifactorial pathogenesis of atrial remodelling and AF that hampers the identification of causative pathophysiological alterations in individual patients. Also, again new mechanisms have been identified and the relative contribution of these mechanisms still has to be established. In November 2010, the European Union launched the large collaborative project EUTRAF (European Network of Translational Research in Atrial Fibrillation) to address these challenges. The main aims of EUTRAF are to study the main mechanisms of initiation and perpetuation of AF, to identify the molecular alterations underlying atrial remodelling, to develop markers allowing to monitor this processes, and suggest strategies to treat AF based on insights in newly defined disease mechanisms. This article reports on the objectives, the structure, and initial results of this network

    Phase transitions in self-gravitating systems and bacterial populations with a screened attractive potential

    Full text link
    We consider a system of particles interacting via a screened Newtonian potential and study phase transitions between homogeneous and inhomogeneous states in the microcanonical and canonical ensembles. Like for other systems with long-range interactions, we obtain a great diversity of microcanonical and canonical phase transitions depending on the dimension of space and on the importance of the screening length. We also consider a system of particles in Newtonian interaction in the presence of a ``neutralizing background''. By a proper interpretation of the parameters, our study describes (i) self-gravitating systems in a cosmological setting, and (ii) chemotaxis of bacterial populations in the original Keller-Segel model

    Starcounts Redivivus. IV. Density Laws Through Photometric Parallaxes

    Full text link
    In an effort to more precisely define the spatial distribution of Galactic field stars, we present an analysis of the photometric parallaxes of 70,000 stars covering nearly 15 square degrees in seven Kapteyn Selected Areas. We address the affects of Malmquist Bias, subgiant/giant contamination, metallicity and binary stars upon the derived density laws. The affect of binary stars is the most significant. We find that while the disk-like populations of the Milky Way are easily constrained in a simultaneous analysis of all seven fields, no good simultaneous solution for the halo is found. We have applied halo density laws taken from other studies and find that the Besancon flattened power law halo model (c/a=0.6, r^-2.75) produces the best fit to our data. With this halo, the thick disk has a scale height of 750 pc with an 8.5% normalization to the old disk. The old disk scale height is 280-300 pc. Corrected for a binary fraction of 50%, these scale heights are 940 pc and 350-375 pc, respectively. Even with this model, there are systematic discrepancies between the observed and predicted density distributions. Our model produces density overpredictions in the inner Galaxy and density underpredictions in the outer Galaxy. A possible solution is modeling the stellar halo as a two-component system in which the halo has a flattened inner distribution and a roughly spherical, but substructured outer distribution. Further reconciliation could be provided by a flared thick disk, a structure consistent with a merger origin for that population. (Abridged)Comment: 66 pages, accepted to Astrophysical journal, some figures compresse

    Synthesis of Fluorine-18 Functionalized Nanoparticles for use as in vivo Molecular Imaging Agents

    Get PDF
    Nanoparticles containing fluorine-18 were prepared from block copolymers made by ring opening metathesis polymerization (ROMP). Using the fast initiating ruthenium metathesis catalyst (H_2IMes)(pyr)_2(Cl)_2Ru=CHPh, low polydispersity amphiphilic block copolymers were prepared from a cinnamoyl-containing hydrophobic norbornene monomer and a mesyl-terminated PEG-containing hydrophilic norbornene monomer. Self-assembly into micelles and subsequent cross-linking of the micelle cores by light-activated dimerization of the cinnamoyl groups yielded stable nanoparticles. Incorporation of fluorine-18 was achieved by nucleophilic displacement of the mesylates by the radioactive fluoride ion with 31% incorporation of radioactivity. The resulting positron-emitting nanoparticles are to be used as in vivo molecular imaging agents for use in tumor imaging

    RHYTHM-AF: design of an international registry on cardioversion of atrial fibrillation and characteristics of participating centers

    Get PDF
    BACKGROUND Atrial fibrillation is a serious public health problem posing a considerable burden to not only patients, but the healthcare environment due to high rates of morbidity, mortality, and medical resource utilization. There are limited data on the variation in treatment practice patterns across different countries, healthcare settings and the associated health outcomes. METHODS/DESIGN RHYTHM-AF was a prospective observational multinational study of management of recent onset atrial fibrillation patients considered for cardioversion designed to collect data on international treatment patterns and short term outcomes related to cardioversion. We present data collected in 10 countries between May 2010 and June 2011. Enrollment was ongoing in Italy and Brazil at the time of data analysis. Data were collected at the time of atrial fibrillation episode in all countries (Australia, Brazil, France, Germany, Italy, Netherlands, Poland, Spain, Sweden, United Kingdom), and cumulative follow-up data were collected at day 60 (±10) in all but Spain. Information on center characteristics, enrollment data, patient demographics, detail of atrial fibrillation episode, medical history, diagnostic procedures, acute treatment of atrial fibrillation, discharge information and the follow-up data on major events and rehospitalizations up to day 60 were collected. DISCUSSIN A total of 3940 patients were enrolled from 175 acute care centers. 70.5% of the centers were either academic (44%) or teaching (26%) hospitals with an overall median capacity of 510 beds. The sites were mostly specialized with anticoagulation clinics (65.9%), heart failure (75.1%) and hypertension clinics (60.1%) available. The RHYTHM-AF registry will provide insight into regional variability of antiarrhythmic and antithrombotic treatment of atrial fibrillation, the appropriateness of such treatments with respect to outcomes, and their cost-efficacy. Observations will help inform strategies to improve cardiovascular outcomes in patients with atrial fibrillation. TRIAL REGISTRATION Clinical trials NCT01119716Harry JGM Crijns, Lori D Bash, François Chazelle, Jean-Yves Le Heuzey, Thorsten Lewalter, Gregory YH Lip, Aldo P Maggioni, Alfonso Martín, Piotr Ponikowski, Mårten Rosenqvist, Prashanthan Sanders, Mauricio Scanavacca, Alexandra A Bernhardt, Sreevalsa Unniachan, Hemant M Phatak and Anselm K Git

    Dynamical density delay maps: simple, new method for visualising the behaviour of complex systems

    Get PDF
    Background. Physiologic signals, such as cardiac interbeat intervals, exhibit complex fluctuations. However, capturing important dynamical properties, including nonstationarities may not be feasible from conventional time series graphical representations. Methods. We introduce a simple-to-implement visualisation method, termed dynamical density delay mapping (``D3-Map'' technique) that provides an animated representation of a system's dynamics. The method is based on a generalization of conventional two-dimensional (2D) Poincar� plots, which are scatter plots where each data point, x(n), in a time series is plotted against the adjacent one, x(n+1). First, we divide the original time series, x(n) (n=1,..., N), into a sequence of segments (windows). Next, for each segment, a three-dimensional (3D) Poincar� surface plot of x(n), x(n+1), hx(n),x(n+1) is generated, in which the third dimension, h, represents the relative frequency of occurrence of each (x(n),x(n+1)) point. This 3D Poincar\'e surface is then chromatised by mapping the relative frequency h values onto a colour scheme. We also generate a colourised 2D contour plot from each time series segment using the same colourmap scheme as for the 3D Poincar\'e surface. Finally, the original time series graph, the colourised 3D Poincar\'e surface plot, and its projection as a colourised 2D contour map for each segment, are animated to create the full ``D3-Map.'' Results. We first exemplify the D3-Map method using the cardiac interbeat interval time series from a healthy subject during sleeping hours. The animations uncover complex dynamical changes, such as transitions between states, and the relative amount of time the system spends in each state. We also illustrate the utility of the method in detecting hidden temporal patterns in the heart rate dynamics of a patient with atrial fibrillation. The videos, as well as the source code, are made publicly available. Conclusions. Animations based on density delay maps provide a new way of visualising dynamical properties of complex systems not apparent in time series graphs or standard Poincar\'e plot representations. Trainees in a variety of fields may find the animations useful as illustrations of fundamental but challenging concepts, such as nonstationarity and multistability. For investigators, the method may facilitate data exploration

    Sinus versus nonsinus tachycardia in the emergency department: Importance of age and heart rate

    Get PDF
    BACKGROUND: The emergency department diagnosis of sinus versus nonsinus tachycardia is an important clinical challenge. The objective of this study was to identify subjects with a high prevalence of nonsinus tachycardia. METHODS: Heart rate and cardiac rhythm were prospective reviewed in 500 consecutive patients with heart rate ≥ 100 beats/min in a busy emergency department. A predictive model based on age and heart rate was then developed to identify the probability of nonsinus tachycardia. RESULTS: As age and heart rate increased, nonsinus tachycardias became more frequent. The probability of nonsinus tachycardia in a subject ≥ 71 years with heart rate ≥ 141 beats/minute was 93%, compared to only three percent in a subject ≤ 50 years with heart rate 100–120 beats/minute. A simple point score system based on age and heart rate helps predict the probability of sinus tachycardia versus nonsinus tachycardia. CONCLUSION: Nonsinus tachycardia is significantly more common than sinus tachycardia in elderly patients in the emergency department. The diagnosis of sinus tachycardia becomes much less likely as age and heart rate increase

    Using Insights from Cognitive Neuroscience to Investigate the Effects of Event-Driven Process Chains on Process Model Comprehension

    Get PDF
    Business process models have been adopted by enterprises for more than a decade. Especially for domain experts, the comprehension of process models constitutes a challenging task that needs to be mastered when creating or reading these models. This paper presents the results we obtained from an eye tracking experiment on process model comprehension. In detail, individuals with either no or advanced expertise in process modeling were confronted with models expressed in terms of Event-driven Process Chains (EPCs), reflecting different levels of difficulty. The first results of this experiment confirm recent findings from one of our previous experiments on the reading and comprehension of process models. On one hand, independent from their level of exper-tise, all individuals face similar patterns, when being confronted with process models exceeding a certain level of difficulty. On the other, it appears that process models expressed in terms of EPCs are perceived differently compared to process models specified in the Business Process Model and Notation (BPMN). In the end, their generalization needs to be confirmed by additional empirical experiments. The presented expe-riment continues a series of experiments that aim to unravel the factors fostering the comprehension of business process models by using methods and theories stemming from the field of cognitive neuroscience and psychology
    corecore