56 research outputs found

    On the Accuracy of Time-delay Cosmography in the Frontier Fields Cluster MACS J1149.5+2223 with Supernova Refsdal

    No full text
    We study possible systematic effects on the values of the cosmological parameters measured through strong lensing analyses of the Hubble Frontier Field galaxy cluster MACS J1149.5+2223. We use the observed positions of a large set of spectroscopically selected multiple images, including those of supernova "Refsdal" with their published time delays. Starting from our reference model in a flat ?CDM cosmology, published in Grillo et al. (2018), we confirm the relevance of the longest measurable time delay, between SX and S1, and an approximately linear relation between its value and that ofH(0). We perform true blind tests by considering a range of time delays around its original estimate of 345 10 days, as an accurate measurement of this time delay is still not known at the time of analysis and writing. We investigate separately the impact of a constant sheet of mass at the cluster redshift, of a power-law profile for the mass density of the cluster main halo and of some scatter in the cluster member scaling relations. Remarkably, we find that these systematic effects do not introduce a significant bias on the inferred values ofH(0)and omega(m)and that the statistical uncertainties dominate the total error budget: a 3% uncertainty on the time delay of image SX translates into approximately 6% and 40% (including both statistical and systematic 1 sigma) uncertainties forH(0)and omega(m), respectively. Furthermore, our model accurately reproduces the extended surface brightness distribution of the supernova host. We also present the interesting possibility of measuring the value of the equation-of-state parameterwof the dark energy density, currently with a 30% uncertainty

    VLT/MUSE Observations of SDSS J1029+2623: Toward a High-precision Strong Lensing Model

    No full text
    We present a strong lensing analysis of the galaxy cluster SDSS J1029+2623 at z = 0.588, one of the few currently known lens clusters with multiple images of a background (z = 2.1992) quasar with a measured time delay. We use archival Hubble Space Telescope multiband imaging and new Multi Unit Spectroscopic Explorer follow-up spectroscopy to build an accurate lens mass model, a crucial step toward future cosmological applications. The spectroscopic data enable the secure identification of 57 cluster members and of two nearby perturbers along the line of sight. We estimate the inner kinematics of a subset of 20 cluster galaxies to calibrate the scaling relations parameterizing the sub-halo mass component. We also reliably determine the redshift of four multiply imaged sources, provide a tentative measurement for one system, and report the discovery of a new four-image system. The final catalog comprises 26 multiple images from seven background sources, spanning a wide redshift range, from 1.02 to 5.06. We present two parametric lens models, with slightly different cluster mass parameterizations. The observed positions of the multiple images are accurately reproduced within approximately 0.'' 2, the three image positions of the quasar within only similar to 0.'' 1. We estimate a cluster projected total mass of M(<300 kpc) similar to 2.1 x 10(14) M (circle dot), with a statistical uncertainty of a few percent. Both models, which include a small galaxy close to one of the quasar images, predict magnitude differences and time delays between the quasar images that are consistent with the observations

    VLT/MUSE Observations of SDSS J1029+2623: Toward a High-precision Strong Lensing Model

    No full text
    We present a strong lensing analysis of the galaxy cluster SDSS J1029+2623 at z = 0.588, one of the few currently known lens clusters with multiple images of a background (z = 2.1992) quasar with a measured time delay. We use archival Hubble Space Telescope multiband imaging and new Multi Unit Spectroscopic Explorer follow-up spectroscopy to build an accurate lens mass model, a crucial step toward future cosmological applications. The spectroscopic data enable the secure identification of 57 cluster members and of two nearby perturbers along the line of sight. We estimate the inner kinematics of a subset of 20 cluster galaxies to calibrate the scaling relations parameterizing the sub-halo mass component. We also reliably determine the redshift of four multiply imaged sources, provide a tentative measurement for one system, and report the discovery of a new four-image system. The final catalog comprises 26 multiple images from seven background sources, spanning a wide redshift range, from 1.02 to 5.06. We present two parametric lens models, with slightly different cluster mass parameterizations. The observed positions of the multiple images are accurately reproduced within approximately 0.'' 2, the three image positions of the quasar within only similar to 0.'' 1. We estimate a cluster projected total mass of M(<300 kpc) similar to 2.1 x 10(14) M (circle dot), with a statistical uncertainty of a few percent. Both models, which include a small galaxy close to one of the quasar images, predict magnitude differences and time delays between the quasar images that are consistent with the observations

    SPECTROSCOPIC IDENTIFICATION OF HIGH REDSHIFT LENSED GALAXIES

    No full text
    We summarize an ongoing observational program, which combines HST imaging, VLT spectroscopy and exploits gravitational lensing of massive clusters, to identify faint Lyman-alpha emitters (3.2 < z < 6.3)

    Joining X-Ray to Lensing: An Accurate Combined Analysis of MACS J0416.1-2403

    No full text
    We present a novel approach for a combined analysis of X-ray and gravitational lensing data and apply this technique to the merging galaxy cluster MACS J0416.1-2403. The method exploits the information on the intracluster gas distribution that comes from a fit of the X-ray surface brightness and then includes the hot gas as a fixed mass component in the strong-lensing analysis. With our new technique, we can separate the collisional from the collision-less diffuse mass components, thus obtaining a more accurate reconstruction of the dark matter distribution in the core of a cluster. We introduce an analytical description of the X-ray emission coming from a set of dual pseudo-isothermal elliptical mass distributions, which can be directly used in most lensing softwares. By combining Chandra observations with Hubble Frontier Fields imaging and Multi Unit Spectroscopic Explorer spectroscopy in MACS J0416.1-2403, we measure a projected gas-to-total mass fraction of approximately 10% at 350 kpc from the cluster center. Compared to the results of a more traditional cluster mass model (diffuse halos plus member galaxies), we find a significant difference in the cumulative projected mass profile of the dark matter component and that the dark matter over total mass fraction is almost constant, out to more than 350 kpc. In the coming era of large surveys, these results show the need of multiprobe analyses for detailed dark matter studies in galaxy clusters

    An accurate strong lensing model of the Abell 2163 core

    No full text
    Abell 2163 at z similar or equal to 0:201 is one of the most massive galaxy clusters known, very likely in a post-merging phase. Data from several observational windows suggest a complex mass structure with interacting subsystems, which makes the reconstruction of a realistic merging scenario very di fficult. A missing key element in this sense is unveiling the cluster mass distribution at high resolution. We perform such a reconstruction of the cluster inner total mass through a strong lensing model based on new spectroscopic redshift measurements. We use data from the Multi Unit Spectroscopic Explorer on the Very Large Telescope to confirm 12 multiple images of four sources with redshift values from 1.16 to 2.72. We also discover four new multiple images and identify 29 cluster members and 35 foreground and background sources. The resulting galaxy member and image catalogs are used to build five cluster total mass models. The fiducial model consists of 111 small-scale subhalos, plus a di ffuse component, which is centered similar to 2 '' away from the BCG belonging to the east Abell 2163 subcluster. We confirm that the latter is well represented by a single, large-scale mass component. Its strong elongation towards a second (west) subcluster confirms the existence of a preferential axis, corresponding to the merging direction. From the fiducial model, we extrapolate the cumulative projected total mass profile and measure a value of M(< 300 kpc) = 1.43(-0.06)(+0.07) 10(14) M-circle dot, which has a significantly reduced statistical error compared with previous estimates, thanks to the inclusion of the spectroscopic redshifts. Our strong lensing results are very accurate: the model-predicted positions of the multiple images are, on average, only 0 ''.15 away from the observed ones

    An accurate strong lensing model of the Abell 2163 core

    No full text
    Abell 2163 at z similar or equal to 0:201 is one of the most massive galaxy clusters known, very likely in a post-merging phase. Data from several observational windows suggest a complex mass structure with interacting subsystems, which makes the reconstruction of a realistic merging scenario very di fficult. A missing key element in this sense is unveiling the cluster mass distribution at high resolution. We perform such a reconstruction of the cluster inner total mass through a strong lensing model based on new spectroscopic redshift measurements. We use data from the Multi Unit Spectroscopic Explorer on the Very Large Telescope to confirm 12 multiple images of four sources with redshift values from 1.16 to 2.72. We also discover four new multiple images and identify 29 cluster members and 35 foreground and background sources. The resulting galaxy member and image catalogs are used to build five cluster total mass models. The fiducial model consists of 111 small-scale subhalos, plus a di ffuse component, which is centered similar to 2 '' away from the BCG belonging to the east Abell 2163 subcluster. We confirm that the latter is well represented by a single, large-scale mass component. Its strong elongation towards a second (west) subcluster confirms the existence of a preferential axis, corresponding to the merging direction. From the fiducial model, we extrapolate the cumulative projected total mass profile and measure a value of M(< 300 kpc) = 1.43(-0.06)(+0.07) 10(14) M-circle dot, which has a significantly reduced statistical error compared with previous estimates, thanks to the inclusion of the spectroscopic redshifts. Our strong lensing results are very accurate: the model-predicted positions of the multiple images are, on average, only 0 ''.15 away from the observed ones

    Improved strong lensing modelling of galaxy clusters using the Fundamental Plane: Detailed mapping of the baryonic and dark matter mass distribution of Abell S1063

    No full text
    Aims. From accurate photometric and spectroscopic information, we build the Fundamental Plane (FP) relation for the early-type galaxies of the cluster Abell S1063. We use this relation to develop an improved strong lensing model of the cluster, and we decompose the cluster's cumulative projected total mass profile into its stellar, hot gas, and dark matter mass components. We compare our results with the predictions of cosmological simulations. Methods. We calibrate the FP using Hubble Frontier Fields photometry and data from the Multi Unit Spectroscopic Explorer on the Very Large Telescope. The FP allows us to determine the velocity dispersions of all 222 cluster members included in the model from their measured structural parameters. As for their truncation radii, we test a proportionality relation with the observed half-light radii. Fixing the mass contribution of the hot gas component from X-ray data, the mass density distributions of the diffuse dark matter haloes are optimised by comparing the observed and model-predicted positions of 55 multiple images of 20 background sources distributed over the redshift range 0.73 - 6.11. We determine the uncertainties on the model parameters with Monte Carlo Markov chains. Results. We find that the most accurate predictions of the positions of the multiple images are obtained when the truncation radii of the member galaxies are approximately 2.3 times their effective radii. Compared to earlier work on the same cluster, our model allows for the inclusion of some scatter on the relation between the total mass and the velocity dispersion of the cluster members. We notice a lower statistical uncertainty on the value of some model parameters. For instance, the main dark matter halo of the cluster has a core radius of 86 +/- 2 kpc: the uncertainty on this value decreases by more than 30% with respect to previous work. Taking advantage of a new estimate of the stellar mass of all cluster members from the HST multi-band data, we measure the cumulative two-dimensional mass profiles out to a radius of 350 kpc for all baryonic and dark matter components of the cluster. At the outermost radius of 350 kpc, we obtain a baryon fraction of 0.147 +/- 0.002. We study the stellar-to-total mass fraction of the high-mass cluster members in our model, finding good agreement with the observations of wide galaxy surveys and some disagreement with the predictions of halo occupation distribution studies based on N-body simulations. Finally, we compare the features of the sub-haloes as described by our model with those predicted by high-resolution hydrodynamical simulations. We obtain compatible results in terms of the stellar over total mass fraction. On the other hand, we report some discrepancies both in terms of the maximum circular velocity, which is an indication of the halo compactness, and the sub-halo total mass function in the central cluster regions

    Improved strong lensing modelling of galaxy clusters using the Fundamental Plane: Detailed mapping of the baryonic and dark matter mass distribution of Abell S1063

    No full text
    Aims. From accurate photometric and spectroscopic information, we build the Fundamental Plane (FP) relation for the early-type galaxies of the cluster Abell S1063. We use this relation to develop an improved strong lensing model of the cluster, and we decompose the cluster's cumulative projected total mass profile into its stellar, hot gas, and dark matter mass components. We compare our results with the predictions of cosmological simulations. Methods. We calibrate the FP using Hubble Frontier Fields photometry and data from the Multi Unit Spectroscopic Explorer on the Very Large Telescope. The FP allows us to determine the velocity dispersions of all 222 cluster members included in the model from their measured structural parameters. As for their truncation radii, we test a proportionality relation with the observed half-light radii. Fixing the mass contribution of the hot gas component from X-ray data, the mass density distributions of the diffuse dark matter haloes are optimised by comparing the observed and model-predicted positions of 55 multiple images of 20 background sources distributed over the redshift range 0.73 - 6.11. We determine the uncertainties on the model parameters with Monte Carlo Markov chains. Results. We find that the most accurate predictions of the positions of the multiple images are obtained when the truncation radii of the member galaxies are approximately 2.3 times their effective radii. Compared to earlier work on the same cluster, our model allows for the inclusion of some scatter on the relation between the total mass and the velocity dispersion of the cluster members. We notice a lower statistical uncertainty on the value of some model parameters. For instance, the main dark matter halo of the cluster has a core radius of 86 +/- 2 kpc: the uncertainty on this value decreases by more than 30% with respect to previous work. Taking advantage of a new estimate of the stellar mass of all cluster members from the HST multi-band data, we measure the cumulative two-dimensional mass profiles out to a radius of 350 kpc for all baryonic and dark matter components of the cluster. At the outermost radius of 350 kpc, we obtain a baryon fraction of 0.147 +/- 0.002. We study the stellar-to-total mass fraction of the high-mass cluster members in our model, finding good agreement with the observations of wide galaxy surveys and some disagreement with the predictions of halo occupation distribution studies based on N-body simulations. Finally, we compare the features of the sub-haloes as described by our model with those predicted by high-resolution hydrodynamical simulations. We obtain compatible results in terms of the stellar over total mass fraction. On the other hand, we report some discrepancies both in terms of the maximum circular velocity, which is an indication of the halo compactness, and the sub-halo total mass function in the central cluster regions

    Discovery of a faint, star-forming, multiply lensed, Lyman-alpha blob

    No full text
    We report the discovery of a multiply lensed Lyman-alpha blob (LAB) behind the galaxy cluster AS1063 using the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT). The background source is at z = 3.117 and is intrinsically faint compared to almost all previously reported LABs. We used our highly precise strong lensing model to reconstruct the source properties, and we find an intrinsic luminosity of L-Ly alpha = 1.9 x 10(42) erg s(-1), extending to 33 kpc. We find that the LAB is associated with a group of galaxies, and possibly a protocluster, in agreement with previous studies that find LABs in overdensities. In addition to Lyman-alpha (Ly alpha) emission, we find C IV, He II, and O III] ultraviolet (UV) emission lines arising from the centre of the nebula. We used the compactness of these lines in combination with the line ratios to conclude that the Ly alpha nebula is likely powered by embedded star formation. Resonant scattering of the Ly alpha photons then produces the extended shape of the emission. Thanks to the combined power of MUSE and strong gravitational lensing, we are now able to probe the circumgalatic medium of sub-L-* galaxies at z approximate to 3
    corecore