1,160 research outputs found

    Testing an Energy Balance Model for Estimating Actual Evapotranspiration Using Remotely Sensed Data

    Get PDF
    An energy-balance model is used to estimate daily evapotranspiration for 3 days for a barley field and a wheat field near Hannover, Federal Republic of Germany. The model was calibrated using once-daily estimates of surface temperatures, which may be remotely sensed. The evaporation estimates were within the 95% error bounds of independent eddy correlation estimates for the daytime periods for all three days for both sites, but the energy-balance estimates are generally higher; it is unclear which estimate is biassed. Soil moisture in the top 2 cm of soil, which may be remotely sensed, may be used to improve these evaporation estimates under partial ground cover. Sensitivity studies indicate the amount of ground data required is not excessive

    A computer program for the simulation of heat and moisture flow in soils

    Get PDF
    A computer program that simulates the flow of heat and moisture in soils is described. The space-time dependence of temperature and moisture content is described by a set of diffusion-type partial differential equations. The simulator uses a predictor/corrector to numerically integrate them, giving wetness and temperature profiles as a function of time. The simulator was used to generate solutions to diffusion-type partial differential equations for which analytical solutions are known. These equations include both constant and variable diffusivities, and both flux and constant concentration boundary conditions. In all cases, the simulated and analytic solutions agreed to within the error bounds which were imposed on the integrator. Simulations of heat and moisture flow under actual field conditions were also performed. Ground truth data were used for the boundary conditions and soil transport properties. The qualitative agreement between simulated and measured profiles is an indication that the model equations are reasonably accurate representations of the physical processes involved

    Estimating water flow through a hillslope using the massively parallel processor

    Get PDF
    A new two-dimensional model of water flow in a hillslope has been implemented on the Massively Parallel Processor at the Goddard Space Flight Center. Flow in the soil both in the saturated and unsaturated zones, evaporation and overland flow are all modelled, and the rainfall rates are allowed to vary spatially. Previous models of this type had always been very limited computationally. This model takes less than a minute to model all the components of the hillslope water flow for a day. The model can now be used in sensitivity studies to specify which measurements should be taken and how accurate they should be to describe such flows for environmental studies

    Reconstruction of Articulated Objects from Point Correspondences in a Single Uncalibrated Image

    Get PDF
    This paper investigates the problem of recovering information about the configuration of an articulated object, such as a human figure, from point correspondences in a single image. Unlike previous approaches, the proposed reconstruction method does not assume that the imagery was acquired with a calibrated camera. An analysis is presented which demonstrates that there are a family of solutions to this reconstruction problem parameterized by a single variable. A simple and effective algorithm is proposed for recovering the entire set of solutions by considering the foreshortening of the segments of the model in the image. Results obtained by applying this algorithm to real images are presented

    Programming a hillslope water movement model on the MPP

    Get PDF
    A physically based numerical model was developed of heat and moisture flow within a hillslope on a parallel architecture computer, as a precursor to a model of a complete catchment. Moisture flow within a catchment includes evaporation, overland flow, flow in unsaturated soil, and flow in saturated soil. Because of the empirical evidence that moisture flow in unsaturated soil is mainly in the vertical direction, flow in the unsaturated zone can be modeled as a series of one dimensional columns. This initial version of the hillslope model includes evaporation and a single column of one dimensional unsaturated zone flow. This case has already been solved on an IBM 3081 computer and is now being applied to the massively parallel processor architecture so as to make the extension to the one dimensional case easier and to check the problems and benefits of using a parallel architecture machine

    Real Time Dense Depth Estimation by Fusing Stereo with Sparse Depth Measurements

    Full text link
    We present an approach to depth estimation that fuses information from a stereo pair with sparse range measurements derived from a LIDAR sensor or a range camera. The goal of this work is to exploit the complementary strengths of the two sensor modalities, the accurate but sparse range measurements and the ambiguous but dense stereo information. These two sources are effectively and efficiently fused by combining ideas from anisotropic diffusion and semi-global matching. We evaluate our approach on the KITTI 2015 and Middlebury 2014 datasets, using randomly sampled ground truth range measurements as our sparse depth input. We achieve significant performance improvements with a small fraction of range measurements on both datasets. We also provide qualitative results from our platform using the PMDTec Monstar sensor. Our entire pipeline runs on an NVIDIA TX-2 platform at 5Hz on 1280x1024 stereo images with 128 disparity levels.Comment: 7 pages, 5 figures, 2 table

    Solving the Graph Cut Problem via \u3cem\u3el\u3c/em\u3e1 Norm Minimization

    Get PDF
    Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization. This l1 norm minimization can then be tackled by solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems and can be implemented effectively on modern parallel architectures. The paper describes an implementation of the algorithm on a GPU and discusses experimental results obtained by applying the procedure to graphs derived from image processing problems
    corecore