16 research outputs found

    Transcriptome-wide analysis of alternative RNA splicing events in Epstein-Barr virus-associated gastric carcinomas

    No full text
    <div><p>Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein–Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS.</p></div

    Validation of ASEs dysregulated in infected cells.

    No full text
    <p>(A) Overview of two isoforms encoded by the <i>ABI1</i> gene. Exons are depicted in red and the intervening introns are shown as thin black lines (not to scale). The primers used to detect the ASE by RT-PCR assays are shown in gray and the sizes of the expected amplicons (306 nt and 393 nt) are also indicated. The genomic coordinates of these two representative isoforms are also indicated. (B) Cellular mRNAs isolated from both uninfected and infected cells were analyzed by RT-PCR using specific primers to detect both forms of the modified ASE encoded by the <i>ABI1</i> gene. The amplified products were analyzed by automated chip-based microcapillary electrophoresis. Capillary electropherograms of the PCR reactions are shown. The positions and the amplitude of the detected amplicons are highlighted by red boxes. The positions of the internal markers are also indicated. The data shows the increase in the relative abundance of the short form (306 nt) and a decrease in the abundance of the long form (393 nt) upon viral infection. (C) Correlation between PSI values obtained from RNA-Seq and RT-PCR data. The analysis was performed on 16 selected ASEs (Abi1, Cwc22, Eif4a2, Hnrnpa2b1, Il34, Srsf3, Srsf5, Alkbh1, Cdkn2aip, Cflar, Hif1a, Mdm2, Serbp1, Sfswap, Smc2, Tbp). In all cases, the changes in AS levels detected by RT-PCR and the ones revealed through transcriptome sequencing displayed high levels of correlation (r >0.77). Sanger sequencing was also realized on several ASEs to confirm that RT-PCR reaction is specific and amplifies predicted ASE.</p
    corecore