9 research outputs found

    Multicentre multi-device hybrid imaging study of coronary artery disease: results from the EValuation of INtegrated Cardiac Imaging for the Detection and Characterization of Ischaemic Heart Disease (EVINCI) hybrid imaging population

    Get PDF
    AIMS: Hybrid imaging provides a non-invasive assessment of coronary anatomy and myocardial perfusion. We sought to evaluate the added clinical value of hybrid imaging in a multi-centre multi-vendor setting. METHODS AND RESULTS: Fourteen centres enrolled 252 patients with stable angina and intermediate (20-90%) pre-test likelihood of coronary artery disease (CAD) who underwent myocardial perfusion scintigraphy (MPS), CT coronary angiography (CTCA), and quantitative coronary angiography (QCA) with fractional flow reserve (FFR). Hybrid MPS/CTCA images were obtained by 3D image fusion. Blinded core-lab analyses were performed for CTCA, MPS, QCA and hybrid datasets. Hemodynamically significant CAD was ruled-in non-invasively in the presence of a matched finding (myocardial perfusion defect co-localized with stenosed coronary artery) and ruled-out with normal findings (both CTCA and MPS normal). Overall prevalence of significant CAD on QCA (>70% stenosis or 30-70% with FFR 640.80) was 37%. Of 1004 pathological myocardial segments on MPS, 246 (25%) were reclassified from their standard coronary distribution to another territory by hybrid imaging. In this respect, in 45/252 (18%) patients, hybrid imaging reassigned an entire perfusion defect to another coronary territory, changing the final diagnosis in 42% of the cases. Hybrid imaging allowed non-invasive CAD rule-out in 41%, and rule-in in 24% of patients, with a negative and positive predictive value of 88% and 87%, respectively. CONCLUSION: In patients at intermediate risk of CAD, hybrid imaging allows non-invasive co-localization of myocardial perfusion defects and subtending coronary arteries, impacting clinical decision-making in almost one every five subjects

    Extraprostatic incidental findings on prostate mpMRI: A pictorial review from the ESUR junior network

    No full text
    The role of multiparametric MRI (mpMRI) in prostate cancer setting is increasingly consolidated and, as a result, its usage in clinical practice is in exponential growth. However, beyond the prostate gland, several key structures are included in the field of view of mpMRI scans. Consequently, various extra-prostatic incidental findings (IFs) belonging to different anatomical systems can be accidentally recognized. Therefore, it is mandatory for a radiologist to be familiar with the wide range of pathologies potentially encountered, to guide management and avoid patient anxiety and costs due to additional work-up prompted by clinically insignificant extra-prostatic findings. With this pictorial review, we aim to illustrate a wide range of IFs that can be detected when performing mpMRI of the prostate, focusing on their imaging characteristics, differential diagnosis, and clinical relevance. Additionally, we propose the CheckDEEP, the Checklist for DEtection of ExtraProstatic findings, to be used for a thorough evaluation of target areas within each anatomical system

    Comparison of coronary flow reserve estimated by dynamic radionuclide SPECT and multi-detector x-ray CT

    No full text
    Background: Recent technical advances in multi-detector computed tomography (MDCT) allow for assessment of coronary flow reserve (CFR). We compared regional CFR by dynamic SPECT and by dynamic MDCT in patients with suspected or known coronary artery disease (CAD). Methods: Thirty-five patients, (29 males, mean age 69 years) with greater than average Framingham risk of CAD, underwent dipyridamole vasodilator stress imaging. CFR was estimated using dynamic SPECT and dynamic MDCT imaging in the same patients. Myocardial perfusion findings were correlated with obstructive CAD ( 6550% luminal narrowing) on CT coronary angiography (CA). Results: Mean CFR estimated by SPECT and MDCT in 595 myocardial segments was not different (1.51 \ub1 0.46 vs. 1.50 \ub1 0.37, p = NS). Correlation of segmental CFR by SPECT and MDCT was fair (r2 = 0.39, p < 0.001). Bland-Altman analysis revealed that MDCT in comparison to SPECT systematically underestimated CFR in higher CFR ranges. By CTCA, 12 patients had normal CA, 11 had non-obstructive, and 12 had obstructive CAD. CFR by both techniques was significantly higher in territories of normal CA than in territories subtended by non-obstructive or obstructive CAD. SPECT CFR was also significantly different in territories subtended by non-obstructive and obstructive CAD, whereas MDCT CFR was not. Conclusion: Despite relative underestimation of high CFR values, MDCT CFR shows promise for assessing the pathophysiological significance of anatomic CAD

    Oligometastatic Prostate Cancer Treated with Metastasis-Directed Therapy Guided by Positron Emission Tomography: Does the Tracer Matter?

    No full text
    The superior diagnostic accuracy of [68Ga]Ga-prostate-specific membrane antigen-11 (PSMA) ([68Ga]Ga-PSMA-11) compared to [18F]F-Fluorocholine Positron Emission Tomography/Computed Tomography (PET/CT) in Prostate Cancer (PCa) is established. However, it is currently unclear if the added diagnostic accuracy actually translates into improved clinical outcomes in oligometastatic PCa patients treated with [68Ga]Ga-PSMA-11 PET-guided metastasis-directed therapy (MDT). The present study aimed to assess the impact of these two imaging techniques on Progression-Free Survival (PFS) in a real-world sample of oligometastatic PCa patients submitted to PET-guided MDT. Thirty-seven oligometastatic PCa patients treated with PET-guided MDT were retrospectively enrolled. MDT was guided by [18F]F-Fluorocholine PET/CT in eleven patients and by [68Ga]Ga-PSMA-11 PET/CT in twenty-six. Progression was defined as biochemical recurrence (BR), radiological progression at subsequent PET/CT imaging, clinical progression, androgen deprivation therapy initiation, or death. Clinical and imaging parameters were assessed as predictors of PFS. [18F]F-Fluorocholine PET-guided MDT was associated with significantly lower PFS compared to the [68Ga]Ga-PSMA-11 group (median PFS, mPFS 15.47 months, 95% CI: 4.13–38.00 vs. 40.93 months, 95% CI: 40.93–40.93, respectively; p < 0.05). Coherently, the radiotracer used for PET-guided MDT resulted in predictive PFS at the univariate analysis, as well as the castration-resistant status at the time of MDT and the PSA nadir after MDT. However, in the multivariate analysis, castration resistance and PSA nadir after MDT remained the sole independent predictors of PFS. In conclusion, in the present proof-of-concept study, [68Ga]Ga-PSMA-11 provided higher PFS rates than [18F]F-Fluorocholine imaging in oligometastatic PCa patients receiving PET-guided MDT. Although preliminary, this finding suggests that enlarging the “tip of the iceberg”, by detecting a major proportion of the submerged disease thanks to next-generation imaging may favourably impact the oncological outcome of oligometastatic PCa treated with MDT

    Oligometastatic Prostate Cancer Treated with Metastasis-Directed Therapy Guided by Positron Emission Tomography: Does the Tracer Matter?

    No full text
    The superior diagnostic accuracy of [68Ga]Ga-prostate-specific membrane antigen-11 (PSMA) ([68Ga]Ga-PSMA-11) compared to [18F]F-Fluorocholine Positron Emission Tomography/Computed Tomography (PET/CT) in Prostate Cancer (PCa) is established. However, it is currently unclear if the added diagnostic accuracy actually translates into improved clinical outcomes in oligometastatic PCa patients treated with [68Ga]Ga-PSMA-11 PET-guided metastasis-directed therapy (MDT). The present study aimed to assess the impact of these two imaging techniques on Progression-Free Survival (PFS) in a real-world sample of oligometastatic PCa patients submitted to PET-guided MDT. Thirty-seven oligometastatic PCa patients treated with PET-guided MDT were retrospectively enrolled. MDT was guided by [18F]F-Fluorocholine PET/CT in eleven patients and by [68Ga]Ga-PSMA-11 PET/CT in twenty-six. Progression was defined as biochemical recurrence (BR), radiological progression at subsequent PET/CT imaging, clinical progression, androgen deprivation therapy initiation, or death. Clinical and imaging parameters were assessed as predictors of PFS. [18F]F-Fluorocholine PET-guided MDT was associated with significantly lower PFS compared to the [68Ga]Ga-PSMA-11 group (median PFS, mPFS 15.47 months, 95% CI: 4.13–38.00 vs. 40.93 months, 95% CI: 40.93–40.93, respectively; p < 0.05). Coherently, the radiotracer used for PET-guided MDT resulted in predictive PFS at the univariate analysis, as well as the castration-resistant status at the time of MDT and the PSA nadir after MDT. However, in the multivariate analysis, castration resistance and PSA nadir after MDT remained the sole independent predictors of PFS. In conclusion, in the present proof-of-concept study, [68Ga]Ga-PSMA-11 provided higher PFS rates than [18F]F-Fluorocholine imaging in oligometastatic PCa patients receiving PET-guided MDT. Although preliminary, this finding suggests that enlarging the “tip of the iceberg”, by detecting a major proportion of the submerged disease thanks to next-generation imaging may favourably impact the oncological outcome of oligometastatic PCa treated with MDT

    Detection of significant coronary artery disease by noninvasive anatomical and functional imaging.

    No full text
    BACKGROUND The choice of imaging techniques in patients with suspected coronary artery disease (CAD) varies between countries, regions, and hospitals. This prospective, multicenter, comparative effectiveness study was designed to assess the relative accuracy of commonly used imaging techniques for identifying patients with significant CAD. METHODS AND RESULTS A total of 475 patients with stable chest pain and intermediate likelihood of CAD underwent coronary computed tomographic angiography and stress myocardial perfusion imaging by single photon emission computed tomography or positron emission tomography, and ventricular wall motion imaging by stress echocardiography or cardiac magnetic resonance. If ≄1 test was abnormal, patients underwent invasive coronary angiography. Significant CAD was defined by invasive coronary angiography as >50% stenosis of the left main stem, >70% stenosis in a major coronary vessel, or 30% to 70% stenosis with fractional flow reserve ≀0.8. Significant CAD was present in 29% of patients. In a patient-based analysis, coronary computed tomographic angiography had the highest diagnostic accuracy, the area under the receiver operating characteristics curve being 0.91 (95% confidence interval, 0.88-0.94), sensitivity being 91%, and specificity being 92%. Myocardial perfusion imaging had good diagnostic accuracy (area under the curve, 0.74; confidence interval, 0.69-0.78), sensitivity 74%, and specificity 73%. Wall motion imaging had similar accuracy (area under the curve, 0.70; confidence interval, 0.65-0.75) but lower sensitivity (49%, P<0.001) and higher specificity (92%, P<0.001). The diagnostic accuracy of myocardial perfusion imaging and wall motion imaging were lower than that of coronary computed tomographic angiography (P<0.001). CONCLUSIONS In a multicenter European population of patients with stable chest pain and low prevalence of CAD, coronary computed tomographic angiography is more accurate than noninvasive functional testing for detecting significant CAD defined invasively. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT00979199
    corecore