21 research outputs found

    Oncolytic adenovirus for treatment of malignant ascites

    Get PDF
    Funding Information: A.H. is a shareholder in Targovax ASA and an employee and shareholder in TILT Biotherapeutics Oy.Non peer reviewe

    The unexplored diversity of pleolipoviruses: the surprising case of two viruses with identical major structural modules

    Get PDF
    Extremely halophilic Archaea are the only known hosts for pleolipoviruses which are pleomorphic non-lytic viruses resembling cellular membrane vesicles. Recently, pleolipoviruses have been acknowledged by the International Committee on Taxonomy of Viruses (ICTV) as the first virus family that contains related viruses with different DNA genomes. Genomic diversity of pleolipoviruses includes single-stranded and double-stranded DNA molecules and their combinations as linear or circular molecules. To date, only eight viruses belong to the family Pleolipoviridae. In order to obtain more information about the diversity of pleolipoviruses, further isolates are needed. Here we describe the characterization of a new halophilic virus isolate, Haloarcula hispanica pleomorphic virus 4 (HHPV4). All pleolipoviruses and related proviruses contain a conserved core of approximately five genes designating this virus family, but the sequence similarity among different isolates is low. We demonstrate that over half of HHPV4 genome is identical to the genome of pleomorphic virus HHPV3. The genomic regions encoding known virion components are identical between the two viruses, but HHPV4 includes unique genetic elements, e.g., a putative integrase gene. The co-evolution of these two viruses demonstrates the presence of high recombination frequency in halophilic microbiota and can provide new insights considering links between viruses, membrane vesicles, and plasmids.Peer reviewe

    TNFa and IL2 Encoding Oncolytic Adenovirus Activates Pathogen and Danger-Associated Immunological Signaling

    Get PDF
    In order to break tumor resistance towards traditional treatments, we investigate the response of tumor and immune cells to a novel, cytokine-armed oncolytic adenovirus: Ad5/3-d24-E2F-hTNFa-IRES-hIL2 (also known as TILT-123 and OAd.TNFa-IL2). There are several pattern recognition receptors (PRR) that might mediate adenovirus-infection recognition. However, the role and specific effects of each PRR on the tumor microenvironment and treatment outcome remain unclear. Hence, the aim of this study was to investigate the effects of OAd.TNFa-IL2 infection on PRR-mediated danger- and pathogen-associated molecular pattern (DAMP and PAMP, respectively) signaling. In addition, we wanted to see which PRRs mediate an antitumor response and are therefore relevant for optimizing this virotherapy. We determined that OAd.TNFa-IL2 induced DAMP and PAMP release and consequent tumor microenvironment modulation. We show that the AIM2 inflammasome is activated during OAd.TNFa-IL2 virotherapy, thus creating an immunostimulatory antitumor microenvironment.Peer reviewe

    Systemic Delivery of Oncolytic Adenovirus to Tumors Using Tumor-Infiltrating Lymphocytes as Carriers

    Get PDF
    Immunotherapy with tumor-infiltrating lymphocytes (TIL) or oncolytic adenoviruses, have shown promising results in cancer treatment, when used as separate therapies. When used in combination, the antitumor effect is synergistically potentiated due oncolytic adenovirus infection and its immune stimulating effects on T cells. Indeed, studies in hamsters have shown a 100% complete response rate when animals were treated with oncolytic adenovirus coding for TNFa and IL-2 (Ad5/3-E2F-D24-hTNFa-IRES-hIL2; TILT-123) and TIL therapy. In humans, one caveat with oncolytic virus therapy is that intratumoral injection has been traditionally preferred over systemic administration, for achieving sufficient virus concentrations in tumors, especially when neutralizing antibodies emerge. We have previously shown that 5/3 chimeric oncolytic adenovirus can bind to human lymphocytes for avoidance of neutralization. In this study, we hypothesized that incubation of oncolytic adenovirus (TILT-123) with TILs prior to systemic injection would allow delivery of virus to tumors. This approach would deliver both components in one self-amplifying product. TILs would help deliver TILT-123, whose replication will recruit more TILs and increase their cytotoxicity. In vitro, TILT-123 was seen binding efficiently to lymphocytes, supporting the idea of dual administration. We show in vivo in different models that virus could be delivered to tumors with TILs as carriers.Peer reviewe

    Effective Combination Immunotherapy with Oncolytic Adenovirus and Anti-PD-1 for Treatment of Human and Murine Ovarian Cancers

    Get PDF
    Ovarian cancer (OvCa) is one of the most common gynecological cancers and has the highest mortality in this category. Tumors are often detected late, and unfortunately over 70% of OvCa patients experience relapse after first-line treatments. OvCa has shown low response rates to immune checkpoint inhibitor (ICI) treatments, thus leaving room for improvement. We have shown that oncolytic adenoviral therapy with Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (aka. TILT-123) is promising for single-agent treatment of cancer, but also for sensitizing tumors for T-cell dependent immunotherapy approaches, such as ICI treatments. Therefore, this study set out to determine the effect of inhibition of the immune checkpoint inhibitors (ICI), in the context of TILT-123 therapy of OvCa. We show that simultaneous treatment of patient derived samples with TILT-123 and ICIs anti-PD-1 or anti-PD-L1 efficiently reduced overall viability. The combinations induced T cell activation, T cells expressed activation markers more often, and the treatment caused positive microenvironment changes, measured by flow cytometric assays. Furthermore, in an immunocompetent in vivo C57BL/6NHsda mouse model, tumor growth was hindered, when treated with TILT-123, ICI or both. Taken together, this study provides a rationale for using TILT-123 virotherapy in combination with TILT-123 and immune checkpoint inhibitors together in an ovarian cancer OvCa clinical trial.Peer reviewe

    Effective Combination Immunotherapy with Oncolytic Adenovirus and Anti-PD-1 for Treatment of Human and Murine Ovarian Cancers

    Get PDF
    Ovarian cancer (OvCa) is one of the most common gynecological cancers and has the highest mortality in this category. Tumors are often detected late, and unfortunately over 70% of OvCa patients experience relapse after first-line treatments. OvCa has shown low response rates to immune checkpoint inhibitor (ICI) treatments, thus leaving room for improvement. We have shown that oncolytic adenoviral therapy with Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (aka. TILT-123) is promising for single-agent treatment of cancer, but also for sensitizing tumors for T-cell dependent immunotherapy approaches, such as ICI treatments. Therefore, this study set out to determine the effect of inhibition of the immune checkpoint inhibitors (ICI), in the context of TILT-123 therapy of OvCa. We show that simultaneous treatment of patient derived samples with TILT-123 and ICIs anti-PD-1 or anti-PD-L1 efficiently reduced overall viability. The combinations induced T cell activation, T cells expressed activation markers more often, and the treatment caused positive microenvironment changes, measured by flow cytometric assays. Furthermore, in an immunocompetent in vivo C57BL/6NHsda mouse model, tumor growth was hindered, when treated with TILT-123, ICI or both. Taken together, this study provides a rationale for using TILT-123 virotherapy in combination with TILT-123 and immune checkpoint inhibitors together in an ovarian cancer OvCa clinical trial.Peer reviewe

    Effect of Genetic Modifications on Physical and Functional Titers of Adenoviral Cancer Gene Therapy Constructs

    Get PDF
    After the discovery and characterization of the adenovirus in the 1950s, this prevalent cause of the common cold and other usually mild diseases has been modified and utilized in biomedicine in several ways. To date, adenoviruses are the most frequently used vectors and therapeutic (e.g., oncolytic) agents with a number of beneficial features. They infect both dividing and nondividing cells, enable high-level, transient protein expression, and are easy to amplify to high concentrations. As an important and versatile research tool, it is of essence to understand the limits and advantages that genetic modification of adenovirus vectors may entail. Therefore, a retrospective analysis was performed of adenoviral gene therapy constructs produced in the same laboratory with similar methods. The aim was to assess the impact of various modifications on the physical and functional titer of the virus. It was found that genome size (designed within "the 105% golden rule") did not significantly affect the physical titer of the adenovirus preparations, regardless of the type of transgene (e.g., immunostimulatory vs. other), number of engineered changes, and size of the mutated virus genome. One statistically significant exception was noted, however. Chimeric adenoviruses (5/3) had a slightly lower physical titer compared to Ad5-based viruses, although a trend for the opposite was true for functional titers. Thus, 5/3 chimeric viruses may in fact be appealing from a safety versus efficacy viewpoint. Armed viruses had lower functional and physical titers than unarmed viruses, while five genomic modifications started to decrease functional titer. Importantly, even highly modified armed viruses generally had good titers compatible with clinical testing. In summary, this paper shows the plasticity of adenovirus for various vector, oncolytic, and armed oncolytic uses. These results inform future generations of adenovirus-based drugs for human use. This information is directly transferable to academic laboratories and the biomedical industry involved in vector design and production optimization.Peer reviewe

    Oncolytic adenovirus shapes the ovarian tumor microenvironment for potent tumor-infiltrating lymphocyte tumor reactivity

    Get PDF
    BACKGROUND: Ovarian cancers often contain significant numbers of tumor-infiltrating lymphocytes (TILs) that can be readily harnessed for adoptive T-cell therapy (ACT). However, the immunosuppressive ovarian tumor microenvironment and lack of tumor reactivity in TILs can limit the effectiveness of the therapy. We hypothesized that by using an oncolytic adenovirus (Ad5/3-E2F-D24-hTNFa-IRES-hIL2; TILT-123) to deliver tumor necrosis factor alpha (TNFa) and interleukin-2 (IL-2), we could counteract immunosuppression, and enhance antitumor TIL responses in ovarian cancer (OVCA). METHODS: We established ex vivo tumor cultures freshly derived from patients with advanced OVCA and evaluated the effects of Ad5/3-E2F-D24-hTNFa-IRES-hIL2 or Ad5/3-E2F-D24 (the control virus without TNFa and IL-2) on TILs, cytokine response and tumor viability. Tumor reactivity was assessed by determining interferon gamma (IFNg) response of clinically relevant TILs towards autologous T-cell-depleted ex vivo tumor cultures pretreated with or without the aforementioned oncolytic adenoviruses. RESULTS: Treatment of ex vivo tumor cultures with Ad5/3-E2F-D24-hTNFa-IRES-hIL2 caused a substantial rise in proinflammatory signals: increased secretion of IFNg, CXCL10, TNFa and IL-2, and concomitant activation of CD4+ and CD8+ TILs. Potent tumor reactivity was seen, as clinically relevant TIL secreted high levels of IFNg in response to autologous T-cell-depleted ovarian ex vivo tumor cultures treated with Ad5/3-E2F-D24-hTNFa-IRES-hIL2. This phenomenon was independent of PD-L1 expression in tumor cells, a factor that determined the variability of IFNg responses seen in different patient samples. CONCLUSIONS: Overall, oncolytic adenovirus Ad5/3-E2F-D24-hTNFa-IRES-hIL2 was able to rewire the ovarian tumor microenvironment to accommodate heightened antitumor TIL reactivity. Such effects may improve the clinical effectiveness of ACT with TILs in patients with advanced OVCA.Peer reviewe

    Ad5/3 is able to avoid neutralization by binding to erythrocytes and lymphocytes

    Get PDF
    Oncolytic adenoviruses are promising cancer therapeutic agents. Clinical data have shown adenoviruses' ability to transduce tumors after systemic delivery in human cancer patients, despite antibodies. In the present work, we have focused on the interaction of a chimeric adenovirus Ad5/3 with human lymphocytes and human erythrocytes. Ad5/3 binding with human lymphocytes and erythrocytes was observed to occur in a reversible manner, which allowed viral transduction of tumors, and oncolytic potency of Ad5/3 in vitro and in vivo,with or without neutralizing antibodies. Immunodeficient mice bearing xenograft tumors showed enhanced tumor transduction following systemic administration, when Ad5/3 virus was bound to lymphocytes or erythrocytes (P <0.05). In conclusion, our findings reveal that chimeric Ad5/3 adenovirus reaches non-injected tumors in the presence of neutralizing antibodies: it occurs through reversible binding to lymphocytes and erythrocytes.Peer reviewe
    corecore