308 research outputs found

    Biasing MCTS with Features for General Games

    Get PDF
    This paper proposes using a linear function approximator, rather than a deep neural network (DNN), to bias a Monte Carlo tree search (MCTS) player for general games. This is unlikely to match the potential raw playing strength of DNNs, but has advantages in terms of generality, interpretability and resources (time and hardware) required for training. Features describing local patterns are used as inputs. The features are formulated in such a way that they are easily interpretable and applicable to a wide range of general games, and might encode simple local strategies. We gradually create new features during the same self-play training process used to learn feature weights. We evaluate the playing strength of an MCTS player biased by learnt features against a standard upper confidence bounds for trees (UCT) player in multiple different board games, and demonstrate significantly improved playing strength in the majority of them after a small number of self-play training games.Comment: Accepted at IEEE CEC 2019, Special Session on Games. Copyright of final version held by IEE

    Learning Policies from Self-Play with Policy Gradients and MCTS Value Estimates

    Get PDF
    In recent years, state-of-the-art game-playing agents often involve policies that are trained in self-playing processes where Monte Carlo tree search (MCTS) algorithms and trained policies iteratively improve each other. The strongest results have been obtained when policies are trained to mimic the search behaviour of MCTS by minimising a cross-entropy loss. Because MCTS, by design, includes an element of exploration, policies trained in this manner are also likely to exhibit a similar extent of exploration. In this paper, we are interested in learning policies for a project with future goals including the extraction of interpretable strategies, rather than state-of-the-art game-playing performance. For these goals, we argue that such an extent of exploration is undesirable, and we propose a novel objective function for training policies that are not exploratory. We derive a policy gradient expression for maximising this objective function, which can be estimated using MCTS value estimates, rather than MCTS visit counts. We empirically evaluate various properties of resulting policies, in a variety of board games.Comment: Accepted at the IEEE Conference on Games (CoG) 201

    Ludii -- The Ludemic General Game System

    Full text link
    While current General Game Playing (GGP) systems facilitate useful research in Artificial Intelligence (AI) for game-playing, they are often somewhat specialised and computationally inefficient. In this paper, we describe the "ludemic" general game system Ludii, which has the potential to provide an efficient tool for AI researchers as well as game designers, historians, educators and practitioners in related fields. Ludii defines games as structures of ludemes -- high-level, easily understandable game concepts -- which allows for concise and human-understandable game descriptions. We formally describe Ludii and outline its main benefits: generality, extensibility, understandability and efficiency. Experimentally, Ludii outperforms one of the most efficient Game Description Language (GDL) reasoners, based on a propositional network, in all games available in the Tiltyard GGP repository. Moreover, Ludii is also competitive in terms of performance with the more recently proposed Regular Boardgames (RBG) system, and has various advantages in qualitative aspects such as generality.Comment: Accepted at ECAI 202

    General Board Game Concepts

    Get PDF
    Many games often share common ideas or aspects between them, such as their rules, controls, or playing area. However, in the context of General Game Playing (GGP) for board games, this area remains under-explored. We propose to formalise the notion of "game concept", inspired by terms generally used by game players and designers. Through the Ludii General Game System, we describe concepts for several levels of abstraction, such as the game itself, the moves played, or the states reached. This new GGP feature associated with the ludeme representation of games opens many new lines of research. The creation of a hyper-agent selector, the transfer of AI learning between games, or explaining AI techniques using game terms, can all be facilitated by the use of game concepts. Other applications which can benefit from game concepts are also discussed, such as the generation of plausible reconstructed rules for incomplete ancient games, or the implementation of a board game recommender system
    corecore