

Biasing MCTS with Features for General Games

Citation for published version (APA):

Soemers, D., Piette, E., & Browne, C. (2019). Biasing MCTS with Features for General Games. In IEEE
Congress on Evolutionary Computation: (CEC'19)

Document status and date:
Published: 11/06/2019

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Dec. 2019

https://cris.maastrichtuniversity.nl/portal/en/publications/biasing-mcts-with-features-for-general-games(2f7e20af-dd5b-436a-9b40-b2eff181e1e0).html

Biasing MCTS with Features for General Games
Dennis J. N. J. Soemers, Éric Piette, and Cameron Browne

Department of Data Science and Knowledge Engineering
Maastricht University

Maastricht, the Netherlands
{dennis.soemers,eric.piette,cameron.browne}@maastrichtuniversity.nl

Abstract—This paper proposes using a linear function approx-
imator, rather than a deep neural network (DNN), to bias a
Monte Carlo tree search (MCTS) player for general games. This
is unlikely to match the potential raw playing strength of DNNs,
but has advantages in terms of generality, interpretability and
resources (time and hardware) required for training. Features
describing local patterns are used as inputs. The features are
formulated in such a way that they are easily interpretable
and applicable to a wide range of general games, and might
encode simple local strategies. We gradually create new features
during the same self-play training process used to learn feature
weights. We evaluate the playing strength of an MCTS player
biased by learnt features against a standard upper confidence
bounds for trees (UCT) player in multiple different board games,
and demonstrate significantly improved playing strength in the
majority of them after a small number of self-play training
games.

Index Terms—games, features, search, learning

I. INTRODUCTION

Combinations of search algorithms with learning from self-
play have led to strong results in game-playing AI for var-
ious board games [1]–[3] and video games [4]. Currently,
a common combination is to use Monte Carlo tree search
(MCTS) [5]–[7] for search and deep neural networks (DNNs)
for learning.

While DNN-based learning approaches have advanced the
state of the art in terms of raw playing strength for game-
playing AI, they have a number of disadvantages in compari-
son to other learning techniques in other aspects. For example,
effectively training the large DNNs used to obtain state-of-
the-art results in board games [1]–[3] requires significant
training time and/or large amounts of hardware. Different
games typically require different DNN architectures – the input
and output layers in particular are game-specific – and separate
training processes starting from scratch per game. Due to the
large number of trainable parameters, and the use of low-level
inputs (i.e. raw board states), it is often difficult to extract
interpretable knowledge such as strategies from a DNN during
or after training.

In this paper, we describe and evaluate an approach to
simultaneously grow a set of features, and learn weights
for a linear policy function using those features, from self-
play. Each feature [8] describes a simple local pattern, and
is specified in a general manner that is applicable to many
different games and easily interpretable.

Funded by a e2m ERC Consolidator Grant (http://ludeme.eu).

The focus of this work is not on achieving state-of-the-
art game-playing performance. Our main contribution is to
demonstrate that, using a simple linear policy function, our
learned features and weights can improve the performance of
a standard MCTS player across a variety of board games given
a set of severe restrictions:

• Features are specified in a general format, compatible
with many different games [8].

• We do not manually construct game-specific feature sets.
• We use a low amount of training time; up to 300 games

of self-play per game, with 5 seconds of thinking time
allowed per move.

• We use relatively little hardware (every sequence of self-
play runs sequentially on a single node).

• The learned function must be able to work correctly for
any number of legal actions (i.e., we do not provide an
upper bound on the size of the action space, as is typically
required for the output layer in DNN-based approaches).

• Hyperparameters (for MCTS as well as the self-play
learning process) have not been optimised (their values
are manually selected), and the same hyperparameter
values are used across all games.

Under the restrictions listed above, we find that the perfor-
mance of MCTS can already be improved relatively easily in
multiple different games. We expect that the interpretability
of the features, in combination with a simple linear function,
could provide insight into what strategies are relevant to the
games being modelled, potentially giving some insight into
their strategic potential and the relationships between different
games in terms of strategy [8].

The generality of the approach may also create opportunities
for transferring of strategies between games, which combined
with the low computational requirements could allow the
approach to be applied to large numbers of games and variants
within reasonable times. This is crucial for the Digital Ludeme
Project [9], which involves digitally modelling large numbers
of ancient games and exploring relationships between them.

Section II provides relevant background information for this
paper. The self-play training process used to learn weights for
a linear function is described in Section III. Our approach
for automatically constructing and growing the set of features
per game is explained in Section IV. Section V discusses
the experimental evaluation of the approach. The paper is
concluded in Section VI.

ar
X

iv
:1

90
3.

08
94

2v
1

 [
cs

.A
I]

 2
1

M
ar

 2
01

9

http://ludeme.eu

(game "Tic-Tac-Toe"
(play { (player "P1")(player "P2") })
(equipment
{ (board "Board" (square 3)) }
{ (disc "Piece") (cross "Cross")) }
)
(rules
(moves (to Mover (empty)))
(end (line length:3)(result Mover win))
)
)

Fig. 1. The game of Tic-Tac-Toe modelled in LUDII.

II. BACKGROUND

This section provides background information on the LUDII
general game system [9], which we use to run different games
used for evaluation, and the format in which we specify
general game features [8].

A. The LUDII General Game System

The LUDII general game system [9] implements units of
game-related information, referred to as ludemes [10], in
different Java classes. A single ludeme can, for example, be a
simple game rule that describes a particular kind of legal move,
or it can be a description of a component (a piece or a board)
used to play a game. A complete game can be described as a
tree of ludemes. For example, Fig. 1 depicts how the game of
Tic-Tac-Toe can be modelled in LUDII.

B. Specification of Features

In general game playing (GGP) research based on the Stan-
ford game definition language (GDL) [11], various approaches
have been proposed for using general game features [12]–[16].
These are all built around the logic-based formalism of GDL,
and therefore not directly applicable to general game systems
that use a different language (such as LUDII).

Following [8], the features x used in this paper consist of:
1) A pattern px, which contains one or more elements that

the feature tests for in relative positions. The different
types of elements that a feature can test for in different
positions are off-board, empty, friendly piece, enemy
piece, piece owned by player n (for any n), and piece
with unique index n (in the game’s definition).

2) A description of an action ax which the feature “recom-
mends” playing (in practice a feature may also discour-
age playing its action if a negative weight is learned for
that feature). The action ax is specified by two relative
positions; a position to move “from” and a position to
move “to”. For games like Hex and Go, only the “to”
position is relevant. For games such as Draughts and
Chess, also the “from” position is relevant.

Relative positions in patterns and action specifications of
features are described as sequences of numbers, referred to
as walks. The length of such a sequence corresponds to the

1

3

-1

3

0

1

4

-1

4

1

5

-1

5

2

5

-2

5

0

1

6

-1

6

1

3

-1

3

Fig. 2. Fractional steps and their corresponding relative steps.

number of steps to take through a graph representation of the
playable area (typically a board), starting from some fixed
anchor position. Every number in the sequence denotes how
far we should rotate (as a fraction of a full 360◦, clockwise
turn), relative to the “current” direction, before taking the next
step. Fig. 2 depicts different fractions and their corresponding
movement directions in different types of cells, relative to a
“current” direction pointing to the north.

Features defined in this manner are applicable to any game
that can be modelled as being played on some graph, where
vertices may contain pieces that may be owned by players.
This applies to many board games, and potentially also games
without an explicit board. The LUDII system uses such a graph
to model the playable area of any game. Every vertex contains
a list of references to adjacent vertices, sorted in a consistent
manner to facilitate indexing based on clockwise turns, with
null entries to facilitate off-board checks. Fig. 3 depicts how
a {0, 0, 14} walk can specify relative positions with a similar
semantic meaning in two different types of boards.

NN

Fig. 3. Relative position(s) reached by a {0, 0, 1
4
} walk in two different

boards. In the board on the right-hand side, the 1
4

turn can be rounded to a
turn of 1

3
or 1

6
.

III. EXPERT ITERATION WITH A LINEAR POLICY

In the expert iteration framework [1], [2], an apprentice
policy and an expert policy are used to iteratively improve each
other during self-play. The apprentice policy is a trainable,
computationally efficient component, such as a DNN. Given
any state s, it can compute a distribution p(s) over the set
of actions A(s) that are legal in s in a fixed amount of
time. The expert is generally a component that involves more
“deliberation” (i.e., search or planning), such as MCTS.

The main idea of expert iteration is to view the expert
policy as a policy improvement operator for the apprentice.

The apprentice can be used to bias the searching behaviour
of the expert, and the expert can use additional computation
time to adjust (ideally improve) the distribution computed by
the apprentice. The adjusted distribution can subsequently be
used as a learning target by the apprentice.

A. Formalisation of the Apprentice

The particular combination of a DNN as apprentice, and
MCTS as expert, has led to state-of-the-art game-playing
performance in various board games [1]–[3], but the DNNs
have a number of important drawbacks in aspects other than
raw playing strength, as listed in Section I. Therefore we
investigate using a linear function rather than a DNN in this
paper. We aim to train a function of the form given by (1):

f(s, a) = θ>φ(s, a), (1)

where θ is a vector of trainable parameters, φ(s, a) is a
(binary) feature vector for a state-action pair (s, a), and
f(s, a) ∈ R is a real-valued output for the same state-action
pair. Given a set of legal actions A(s) in a state s, the complete
distribution p(s) over all actions ai ∈ A(s) is computed by
applying the softmax function to a vector of outputs f(s, ai):

pi(s) =
exp(f(s, ai))∑|A(s)|

k=1 exp(f(s, ak))
. (2)

When DNNs are used as apprentice, it is customary to have
an output layer with one output node per unique action that
may ever be legal in any given game state. This can easily
lead to excessively large numbers of outputs in some games,
such as 11, 259 outputs in Shogi [3]. It also requires domain
knowledge in the form of an accurate upper bound on the
number of unique actions, which is a problem in terms of
generality. The number of outputs computed in any given state
s by (2) is equal to the number of legal actions |A(s)| in that
state, which is typically multiple orders of magnitude lower
in a game like Shogi [17]. Of course, an advantage of DNNs
may be that its computational requirements remain constant
regardless of |A(s)|, whereas the computational requirements
of (2) scale linearly with the number of legal actions |A(s)|.
B. Formalisation of Feature Vectors

Suppose that we have some set of features X , where every
feature x ∈ X is specified as described in Subsection II-B.
More details on how such a feature set is created will be pro-
vided in the next section. We say that a feature x is active for
a state-action pair (s, a) if there exists some anchor position
in the game’s underlying graph such that, after applying any
necessary rotation and/or reflection:

1) The feature’s action ax corresponds to the action a.
2) All elements of the feature’s pattern px are satisfied in

the game state s.
Relative positions in ax and px are evaluated by resolving the
walks, starting from the anchor position.

We define state-action feature vectors φ(s, a) as binary
vectors that contain a value of 1 for features x that are
active for the state-action pair (s, a), and a value of 0 for all

other features. Note that different instantiations (with different
anchor positions, rotations, or reflections) of the same feature
may be active simultaneously; in such a case, we still simply
assign a feature value of 1.

C. Guiding the Expert using the Apprentice

We use a learned apprentice policy to guide the expert
(MCTS) in its selection and play-out phases. The most com-
mon selection strategy [5] is to follow the UCB1 policy [18].
Given a current node with a state s, it selects the child node
corresponding to the action aucb1 given by (3).

aucb1 = argmax
a

Q̂(s, a) + Cucb1

√
ln (
∑

a′ N(s, a′))

N(s, a)
. (3)

Q̂(s, a) denotes the estimated value of playing a in s based
on previous MCTS iterations (i.e. the average score backprop-
agated through the node reached by executing a in s), CUCB1

is a hyperparameter (the “exploration constant”), and N(s, a)
denotes the visit count of (s, a) (the number of previous MCTS
iterations that have selected a in the current node). The sum∑

a′ N(s, a′) is equivalent to the total number of previous
MCTS iterations that have reached the current node. This
strategy only uses statistics gathered by MCTS itself, and does
not use the apprentice.

In this paper, we use the apprentice to guide the selection
step of MCTS using the same strategy as AlphaGo Zero [1],
which selects the action apuct given by (4).

apuct = argmax
a

Q̂(s, a) + Cpuctp(s, a)

√∑
a′ N(s, a′)

1 +N(s, a)
. (4)

Cpuct is a hyperparameter, and p(s, a) denotes the probability
of selecting a in s according to the distribution computed by
the apprentice.

The most straightforward approach for using the apprentice
in the play-out step is to select actions according to the
probability distribution computed by the apprentice, rather
than selecting actions uniformly at random. The computational
overhead of computing feature vectors can be mitigated by
transitioning from using the apprentice policy early in play-
outs to a uniform random policy in later parts of play-outs.

D. Training Apprentice with Expert Iteration

We train the apprentice policy in a similar way to [1],
interpreting the visit counts at the end of an MCTS search
process as the target distribution. Let N(s, a) denote the
number of MCTS iterations that selected action a in state s.
For any node in the search tree with a state s, the quantity

N(s,a)∑
a′ N(s,a′) can then be interpreted as the probability assigned

to a in state s by the MCTS expert policy.
Let π(s) denote a vector of such probabilities for all legal

actions a ∈ A(s), and let p(s) denote a similar vector
computed by the apprentice policy. The loss function is then
given by (5):

L(s) = −π(s)> log p(s) +
λ

2
‖θ‖2 , (5)

which computes the cross-entropy loss between the two distri-
butions, and an L2 regularisation penalty with a hyperparam-
eter λ. A stochastic gradient descent (SGD) update to reduce
this loss, based on a single example s, can be implemented
according to (6):

θ ← θ − α
∑

a∈A(s)

[(p(s, a)− π(s, a))× φ(s, a)]− αλθ, (6)

where p(s, a) and π(s, a) denote the entries corresponding to
action a in the p(s) and π(s) vectors, respectively, and α is
a step-size hyperparameter.

IV. GROWING FEATURE SET DURING SELF-PLAY

In prior research using similar types of features to those used
in this paper for game-playing AI applications, the complete
set of features to use is typically determined before any
parameters for policies or value functions using those features
are learned.

For example, large sets of features were exhaustively gener-
ated in the games of Go [19], Hearts [20], and Breakthrough
[21]. Such exhaustive sets can easily contain tens of thousands
of features. When features are used in a pure Reinforcement
Learning agent [20], or implemented for a single specific
game [19], [21] which permits a highly efficient game-specific
implementation (for instance by incrementally updating the set
of active features [19]), it is computationally tractable to use
such large feature sets. In our general game system, we find
that the computational overhead of computing active features
already becomes detrimental to game-playing performance in
some games for feature sets containing only hundreds of
features (see Section V).

Other approaches [22] for discovering sets of useful features
often consist of iteratively modifying feature sets (e.g., by
adding new features in some manner), and evaluating the
usefulness of such modifications by running a number of
evaluation games using the features. This can be slow when
many evaluation games are required for an accurate evaluation.
In this section, we propose an approach that starts with a
small set of initial features, and gradually adds more complex
features during the self-play expert iteration process, guided
by the same loss function used to train the policy.

A. Initial Feature Set

Many ludemes used by the LUDII system to describe legal
moves can easily be extended with functionality to generate
patterns px or (parts of) features x that detect legal moves.
For example, the “(to Mover (empty))” ludeme, used
in Tic-Tac-Toe (Fig. 1) as well as many other games (such as
Hex, Yavalath, etc.), can generate a feature x which:
• Recommends playing in the feature’s anchor position.
• Has a pattern px that requires the same anchor position

(specified using a 0-length walk) to be empty.
Formally, we implement ludemes used in the specification of
move rules to generate a feature set X such that, for any
possible game state s and legal action a ∈ A(s), there exists at
least one feature x ∈ X that is active for the state-action pair

(s, a). In the worst case (for highly complex movement rules),
this can simply be an “empty” feature without any restrictions
on either the action or the game state (i.e. a feature that is
always active).

Such features are generally not interesting features by
themselves. However, they can be used to reduce the space
of candidate features considered for subsequent addition to
the feature set. We only allow new features to be added to
the feature set if they are at least as restrictive as, and not
incompatible with, at least one of the features generated by
movement rule ludemes. This enables us to automatically
ignore many features that would be useless due to never
being active in gameplay. For example, features that require an
enemy or friendly piece in the location where they recommend
playing will never be considered in games that only permit
playing in empty positions.

For every feature generated by move rule ludemes as de-
scribed above, we generate a set of “atomic” features x, which
have exactly one requirement for an element specified in their
pattern px (in addition to any requirements that may already
be there due to move rule ludemes). We exhaustively generate
all such atomic features, with generated walks restricted to at
most two steps. Using only atomic features (no features with
more complex patterns) keeps the initial feature count down
to a low number. We use the maximum number of adjacencies
of any vertex in a game’s graph to determine the number of
potentially meaningful rotations in a game.

B. Adding New Features During Expert Iteration

In the expert iteration framework, experience generated
from self-play is used to update the parameters θ of the
apprentice policy, such that its output distributions p more
closely match the distributions π of the expert policy. The
error p(s, a)−π(s, a), which also appears in the SGD update
rule in (6), has a large absolute value for state-action pairs
(s, a) for which the distributions do not yet closely match,
and a low absolute value if the distributions already closely
match.

We propose to use this error value as an indicator of state-
action pairs (s, a) for which it is beneficial to add new features
to the feature set. The intuition is that there is no need to add
extra features for (s, a) pairs for which p(s, a) already closely
matches π(s, a), but extra features are more likely to be useful
if they activate for (s, a) pairs for which p(s, a) and π(s, a)
do not yet closely match.

Whenever we wish to add a new feature to the fea-
ture set, we sample a batch E = {〈si, A(si),πi(si)〉} of
samples of experience collected from self-play. Every tuple
〈si, A(si),πi(si)〉 in this batch contains a game state si
encountered in self-play, the list of legal actions A(si) in that
state, and the distribution πi(si) over the actions A(si) as
computed by the expert at the point in time when this expe-
rience was saved. This batch is sampled without replacement
from a larger experience buffer, in which we store exactly one
new sample of experience (corresponding to the current game
state) for every game state encountered during self-play.

Every pair of two features instances (xi, xj) that are active
together for at least one state-action pair across the entire batch
E is taken into consideration as a candidate pair that could be
combined into a single new feature xixj . Such a combination
xixj is a new feature in which the patterns of the constituents
xi and xj are merged. Note that a combined feature xixj will
always be active for state-action pairs in which xi and xj were
both active.

The candidate pair (xi, xj) that maximises the score given
by (7) is added to the feature set as a new feature.

score(xi, xj) = |rerr(xi, xj)| ×
(
1− |rxixj

(xi, xj)|
)

(7)

In this equation, rerr(xi, xj) denotes the Pearson correlation
coefficient between errors p(s, a) − π(s, a), and the event of
simultaneously observing features xi and xj to be active for
a state-action pair (s, a). Similarly, rxixj

(xi, xj) denotes the
Pearson correlation coefficient between the event of simultane-
ously observing features xi and xj to be active, and the event
of observing one of the constituents xi or xj to be active
(whichever constituent leads to the strongest correlation is
picked). Correlation coefficients are measured across all state-
action pairs that occur in the complete batch E.

This score implements the intuition that new features are
likely to be useful if they correlate strongly with observed
errors between the apprentice and expert distributions, but are
less likely to be useful if their activations correlate strongly
with the activations of other features in the feature set. Similar
intuition has also been shown to be useful for offline feature
selection in supervised machine learning [23]. Ideally we
would minimise correlations of candidate features between all
features in a feature set, but this is computationally expensive.
Only computing correlations between candidate features and
their constituents is significantly cheaper.

V. EXPERIMENTS

This section describes a number of experiments which
evaluate the effect of features and weights learned from self-
play on the game-playing performance of MCTS in a variety
of board games.

A. Setup

In the self-play process of expert iteration, experience is
generated by equivalent MCTS agents playing against each
other. They use (4) in the selection phase, with Cpuct =

√
2.

The first move of every play-out is sampled from the appren-
tice distribution p, and the corresponding node is added to the
search tree. Subsequent play-out moves are selected uniformly
at random, to avoid additional computational overhead of com-
puting active features. Final moves for the “real” games are
sampled from the expert distribution π. We use 5 seconds of
“thinking time” per move. Games are terminated automatically
after 100 moves, regardless of the game’s standard rules.

We use an experience buffer with a maximum capacity of
200 to store tuples of experience. Every move played in self-
play results in one new tuple of experience. Old tuples are
removed to make room for new tuples if necessary. We run

one SGD update to update the apprentice parameters θ after
every move, with a step-size α = 0.05, and λ = 10−6 for L2

regularisation. Gradients are computed and averaged across a
batch of size 20, sampled from the experience buffer.

We add one new feature after every game of self-play. A
larger batch size of 30 is used in this procedure. We evaluate
three simpler feature discovery strategies, in addition to the
correlation-based variant described in detail in Section IV:

1) Add Random: This variant randomly selects pairs of
simultaneously activated feature instances to combine.
This can be viewed as an unguided baseline strategy.

2) Combine Random: Randomly combines two feature in-
stances that activate together in the state-action pair
(s, a) that maximises the absolute error |p(s, a) −
π(s, a)|.

3) Combine Max: Combines two feature instances that
activate together in the state-action pair (s, a) that max-
imises the absolute error |p(s, a)−π(s, a)|, such that one
of them has the greatest absolute weight in the vector
θ, and the other is selected randomly.

4) Correlation-based: Combines feature instances such that
(7) is maximised, as described in Section IV.

We evaluate the performance of a Biased MCTS agent (using
features and weights learned from self-play) against a standard
upper confidence bounds for trees (UCT) agent:
• Biased MCTS: Equal to the agent used during self-play,

except that it selects moves with maximum visit counts
rather than sampling moves from the π distribution
during evaluation games.

• UCT: Uses (3) in the selection phase, with Cucb1 =
√
2.

Selects moves uniformly at random in play-outs. Plays
moves with maximum visit counts in evaluation games.

All MCTS agents (in self-play as well as evaluation games)
use relevant parts of the search tree built up when searching
for previous moves to initialise the search tree for subsequent
moves. Just like self-play games, evaluation games allow for
5 seconds of thinking time per move, and are automatically
declared a tie after 100 moves.

We use nine different board games with standard board
sizes, all implemented in the LUDII system, for evaluation.
For the game of Hex, we use a 7× 7 board in addition to the
standard 11× 11 board.

B. Results - Growing Feature Set

Fig. 4 depicts learning curves for the four different feature
discovery strategies, for all ten (variants of) games. At different
checkpoints (after 1, 25, 50, 100, and 200 games of self-
play), we play 200 evaluation games where the Biased MCTS
agent plays against the benchmark UCT agent, using the latest
feature set and learned weights available at that checkpoint.
Fig. 4 depicts 95% confidence intervals for the win percentage
of Biased MCTS against UCT at every checkpoint. Ties count
as half a win for each player.

Biased MCTS can quickly learn to outperform UCT in the
majority of games; by a significant margin in Breakthrough,

0 100 200

Num. Self-Play Games

0

25

50

75

100
W

in
%

vs
.

U
C

T

Breakthrough (8× 8)

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Connect 4 (6× 7)

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Fanorona (5× 9)

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Gomoku (15× 15)

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Hex (7× 7)

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Hex (11× 11)

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Knightthrough (8× 8)

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Othello (8× 8)

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Teeko (5× 5)

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Yavalath (5× 5)

Add Random Combine Random Combine Max Correlation-based

Fig. 4. Learning curves for four different feature discovery strategies, over 200 games of self-play. Shaded regions depict 95% confidence intervals for the
win percentage of Biased MCTS vs. UCT. Performance evaluated by playing 200 evaluation games using feature sets and learned weights after 1, 25, 50,
100, and 200 games of self-play.

0.75 1 2 4 8

Slowdown (reduction in number of MCTS iterations)

0.0

12.5

25.0

37.5

50.0

62.5

75.0

87.5

100.0

W
in

%
of

B
ia

se
d

M
C

T
S

vs
.

U
C

T

Breakthrough

Connect 4

Fanorona

Gomoku

Hex (7× 7)

Hex (11× 11)

Knightthrough

Othello

Teeko

Yavalath

Fig. 5. Relation between win percentage of Biased MCTS vs. UCT after 200
games of self-play, and the slowdown (reduction in MCTS iteration count)
due to the computational overhead of using features.

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Breakthrough (8× 8)

0 100 200

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Teeko (5× 5)

Fig. 6. Learning curves for greedy linear agent (without any search) vs. UCT
in the games of Breakthrough and Teeko.

Fanorona, Hex (11×11), Othello, and Teeko, and by a smaller
margin – but often still statistically significant for the strongest
variants – in Connect 4, Hex (7×7), and Knightthrough. Note
that in some of these games there already is a significant gain
in playing strength from just a single game of self-play, but
in others there is a clear benefit in training for a longer time
and growing the feature set. In Gomoku there is no appa-
rant change in playing strength, and in Yavalath the playing

strength is reduced by a significant margin. In most games the
simpler feature discovery strategies already perform well, but
we find the correlation-based feature discovery strategy to be
better in some games, and never significantly worse.

Fig. 5 depicts the relation between the performance of
Biased MCTS after 200 games of self-play against UCT (with
win percentage on the y-axis), and the slowdown due to
computing active features (reduction in number of MCTS
iterations on the x-axis). The slowdown per game is computed
as Iuct

Ibiased
, where Iuct and Ibiased denote the average number

of complete MCTS iterations performed by UCT and Biased
MCTS, respectively, in the first two moves per game. We only
take into account the first two moves per game, because later
moves can have wildly varying iteration counts depending
on the game state. These results are given for the feature
set learned using the Correlation-based strategy. Computing
features leads to the worst slowdown in Yavalath (an 8 times
reduction in MCTS iteration count), which may explain the
poor performance in terms of win percentage in that game.
In general, the computational overhead tends to be most
noticeable in games for which the game implementation itself
is highly efficient in LUDII, and hardly noticeable in games
where the game logic itself requires more computation.

Fig. 6 depicts learning curves for a greedy linear agent,
which greedily plays actions a ∈ A(s) such that p(s, a)
is maximised without performing any tree search at all, for
the games of Breakthrough and Teeko. Surprisingly, we find
that 200 games of self-play is already sufficient in these
games to train a greedy agent that is competitive (reaching
a win percentage of 40%) against UCT. Learning curves for
other games (in which a simple greedy player still has a win
percentage close to 0% against UCT, as we would expect) are
omitted to save space.

C. Results - Pruned Feature Set

To reduce the overhead of computing active features, we
pruned the feature sets of all games by keeping only the 15

200 250 300

Num. Self-Play Games

0

25

50

75

100
W

in
%

vs
.

U
C

T

Breakthrough (8× 8)

200 250 300

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Connect 4 (6× 7)

200 250 300

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Fanorona (5× 9)

200 250 300

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Gomoku (15× 15)

200 250 300

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Hex (7× 7)

200 250 300

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Hex (11× 11)

200 250 300

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Knightthrough (8× 8)

200 250 300

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Othello (8× 8)

200 250 300

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Teeko (5× 5)

200 250 300

Num. Self-Play Games

0

25

50

75

100

W
in

%
vs

.
U

C
T

Yavalath (5× 5)

Add Random Combine Random Combine Max Correlation-based

Fig. 7. Learning curves for pruned features sets, over 100 additional games of self-play. Shaded regions depict 95% confidence intervals for the win percentage
of Biased MCTS vs. UCT. Performance evaluated by playing 200 evaluation games using weights learned after 0, 25, 50, 75, and 100 games of self-play
(after the first sequence of 200 self-play games).

0.75 1 2 4 8

Slowdown (reduction in number of MCTS iterations)

0.0

12.5

25.0

37.5

50.0

62.5

75.0

87.5

100.0

W
in

%
of

B
ia

se
d

M
C

T
S

vs
.

U
C

T

Breakthrough

Connect 4

Fanorona

Gomoku

Hex (7× 7)

Hex (11× 11)
Knightthrough

Othello

Teeko

Yavalath

Fig. 8. Relation between win percentage of Biased MCTS vs. UCT using
pruned feature sets, and the slowdown (reduction in MCTS iteration count)
due to the computational overhead of using features.

features per game with the greatest absolute weights in the
learned parameter vectors θ. Starting with the weights learned
from the initial 200 games of self-play, we run 100 additional
games of self-play to adjust the weights (for which different
values may be better now that many other features have been
pruned), but freeze the feature set. Fig. 7 depicts learning
curves where performance is evaluated for 0, 25, 50, 75, and
100 additional self-play games after pruning the feature set.
Note that the four different feature discovery strategies may
only have influence on the feature set and initial weights in this
figure; they do not matter otherwise because no more features
are added during these self-play games.

The relations between playing strength and slowdowns in
MCTS iteration counts with pruned feature sets are depicted
in Fig. 8. In comparison to the unpruned feature sets of
Fig. 5, we observe the most significant changes in performance
for the games of Knightthrough (where Biased MCTS now
has a significant advantage over UCT), and Yavalath (where
slowdowns and win percentage for Biased MCTS have clearly

been improved, but playing strength is still worse than UCT’s).

D. Interpreting Features in Yavalath

In the game of Yavalath, players win by making a line
of four of their pieces, but lose by making a line of three
of their pieces beforehand. Given these rules, it is relatively
easy to construct useful features by hand. For example, Fig. 9
depicts three features that activate for moves that result in
instant wins or losses. We manually constructed a feature set
with only these three features, and manually assigned large
weights; +3000 for the win-detecting feature, and −1000 for
each of the loss-detecting features. A Biased MCTS player
using this feature set throughout complete play-outs achieves
a win percentage of 93% against UCT, despite a 30× reduction
in the MCTS iteration count. This indicates that the poor
performance of Biased MCTS in Yavalath is not due to a lack
of expressiveness in the feature formalisation, but rather due
to poor features and/or weights being learned from self-play.

Fig. 10 depicts two of the most “important” features (with
large absolute weights) found from self-play in Yavalath.
These are easy to understand and seem sensible. The first
feature recommends making a move to prevent the opponent
from winning in their next turn. The second feature is very
similar to the handcrafted win-detecting feature in Fig. 9,
with the difference being that it has a seemingly unnecessary
requirement for an adjacent opposing piece. This feature can
still often detect immediate wins, but not all of them. Despite
the poor performance in terms of win percentage in Yavalath,
it appears that our proposed approach has still learned sensible
– if not optimal – features in this game.

VI. CONCLUSION

This paper describes and evaluates an approach for simulta-
neously learning a set of features, and corresponding weights
for a linear policy function, for general games implemented
in the LUDII system. The features are formalised in such a
way that they are generally applicable, and easily interpretable.

+

− −

Fig. 9. Immediate win and loss features for the White player in Yavalath.

+ +

Fig. 10. Two of the learned Yavalath features with greatest absolute weights
(drawn from the perspective of the White player).

The training process is also more easily applicable to general
games than, for instance, Deep Neural Networks, which re-
quire game-specific knowledge to determine the numbers of
input and output nodes a priori.

Using the learned features and weights to bias an MCTS
agent, we demonstrate significantly improved game-playing
performance over a standard UCT agent in the majority of
evaluated board games. This performance is achieved with
relatively few self-play games. Out of ten evaluated games,
the use of features only reduced playing strength in the game
of Yavalath due to computational overhead. Despite the poor
performance in this game (which may also lead to poor
update targets during self-play), a manual inspection of the
top features learned in this game indicates that the approach
still discovers sensible features.

In future research, we aim to investigate more approaches
for improved feature discovery from self-play. In particular
in the game of Yavalath, tests with handcrafted features
indicate that it may be useful to pay extra attention to features
for endgame positions. Using optimisers with momentum-
based terms, rather than a simple Stochastic Gradient Descent
optimiser, may enable more rapid learning of large feature
weights for features that reliably detect immediate winning
or losing moves. We also aim to explore transfer learning
between different games, which is already facilitated by the
feature representation which is shared across all games, and
online fine-tuning of trained policies [24].

ACKNOWLEDGMENT

This research is part of the European Research Council-
funded Digital Ludeme Project (ERC Consolidator Grant
#771292) run by Cameron Browne at Maastricht University’s
Department of Data Science and Knowledge Engineering.

REFERENCES

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of Go without human knowledge,” Nature, vol.
550, pp. 354–359, 2017.

[2] T. Anthony, Z. Tian, and D. Barber, “Thinking fast and slow with
deep learning and tree search,” in Adv. in Neural Inf. Process. Syst.
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 5360–5370.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play,” Science, vol. 362, no.
6419, pp. 1140–1144, 2018.

[4] D. R. Jiang, E. Ekwedike, and H. Liu, “Feedback-based tree search
for reinforcement learning,” in Proc. 35th Int. Conf. Mach. Learn., ser.
Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds.,
vol. 80. PMLR, 2018, pp. 2284–2293.

[5] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
Mach. Learn.: ECML 2006, ser. Lecture Notes in Computer Science,
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, Eds. Springer Berlin
Heidelberg, 2006, vol. 4212, pp. 282–293.

[6] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Computers and Games, ser. Lecture Notes in Computer
Science, H. J. van den Herik, P. Ciancarini, and H. H. L. M. Donkers,
Eds., vol. 4630. Springer Berlin Heidelberg, 2007, pp. 72–83.

[7] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey
of Monte Carlo tree search methods,” IEEE Trans. Comput. Intell. AI
Games, vol. 4, no. 1, pp. 1–49, 2012.

[8] C. Browne, D. J. N. J. Soemers, and E. Piette, “Strategic features for
general games,” in Proc. 2nd Workshop on Knowledge Extraction from
Games (KEG), 2019, pp. 70–75.

[9] C. Browne, “Modern techniques for ancient games,” in Proc. 2018 IEEE
Conf. Comput. Intell. Games. IEEE, 2018, pp. 490–497.

[10] D. Parlett, “What’s a ludeme?” Game & Puzzle Design, vol. 2, no. 2,
pp. 83–86, 2016.

[11] M. Genesereth and N. Love, “General game playing: Overview of the
AAAI competition,” AI Magazine, vol. 26, no. 2, pp. 62–72, 2005.

[12] M. Kirci, N. Sturtevant, and J. Schaeffer, “A GGP feature learning
algorithm,” Künstliche Intelligenz, vol. 25, no. 1, pp. 35–42, 2011.

[13] K. Walȩdzik and J. Mańdziuk, “Multigame playing by means of UCT
enhanced with automatically generated evaluation functions,” in Artif.
Gen. Intell.: 4th Int. Conf., ser. Lecture Notes in Computer Science,
vol. 6830. Springer, 2011, pp. 327–332.

[14] D. Michulke and S. Schiffel, “Distance features for general game playing
agents,” in Proc. 4th Int. Conf. Agents Artif. Intell., 2012, pp. 127–136.

[15] ——, “Admissible distance heuristics for general games,” in Agents
Artif. Intell. ICAART 2012, ser. Communications in Computer and Inf.
Science, J. Filipe and A. Fred, Eds., vol. 358. Springer, Berlin,
Heidelberg, 2013.

[16] K. Walȩdzik and J. Mańdziuk, “An automatically generated evaluation
function in general game playing,” IEEE Trans. Comput. Intell. AI
Games, vol. 6, no. 3, pp. 258–270, 2014.

[17] H. Iida, M. Sakuta, and J. Rollason, “Computer shogi,” Artif. Intell., vol.
134, no. 1–2, pp. 121–144, 2002.

[18] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2–3, pp. 235–
256, 2002.

[19] S. Gelly and D. Silver, “Combining online and offline knowledge in
UCT,” in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 273–280.

[20] N. R. Sturtevant and A. M. White, “Feature construction for reinforce-
ment learning in Hearts,” in Computers and Games, ser. Lecture Notes
in Computer Science, H. J. van den Herik, P. Ciancarini, and H. H.
L. M. Donkers, Eds., vol. 4630. Springer, 2007, pp. 122–134.

[21] R. J. Lorentz and T. E. Zosa IV, “Machine learning in the game
of Breakthrough,” in Adv. in Computer Games, ser. Lecture Notes in
Computer Science, M. H. M. Winands, H. van den Herik, and W. A.
Kosters, Eds., vol. 10664. Springer, 2017, pp. 140–150.

[22] P. Skowronski, Y. Björnsson, and M. H. M. Winands, “Automated
discovery of search-extension features,” in Adv. in Computer Games, ser.
Lecture Notes in Computer Science, H. J. van den Herik and P. Spronck,
Eds., vol. 6048. Springer, Berlin, Heidelberg, 2009.

[23] M. A. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, Department of Computer Science, the University of
Waikato, Hamilton, New Zealand, 1999.

[24] T. Cazenave, “Playout policy adaptation with move features,” Theor.
Comput. Sci., vol. 644, pp. 43–52, 2016.

	I Introduction
	II Background
	II-A The Ludii General Game System
	II-B Specification of Features

	III Expert Iteration with a Linear Policy
	III-A Formalisation of the Apprentice
	III-B Formalisation of Feature Vectors
	III-C Guiding the Expert using the Apprentice
	III-D Training Apprentice with Expert Iteration

	IV Growing Feature Set During Self-Play
	IV-A Initial Feature Set
	IV-B Adding New Features During Expert Iteration

	V Experiments
	V-A Setup
	V-B Results - Growing Feature Set
	V-C Results - Pruned Feature Set
	V-D Interpreting Features in Yavalath

	VI Conclusion
	References

