1,665 research outputs found

    Early fall and late winter diets of migratory caribou in northwest Alaska

    Get PDF
    Lichens are the primary winter forage for large herds of migratory caribou (Rangifer tarandus). Caribou select for lichens more than they are available across the landscape and they generally avoid, during winter, habitat that has been burned by wildfires for decades while lichen abundance recovers. However, the relative importance of lichens in the diet is subject to debate. From 2010-2013, we conducted one of the largest microhistological studies of the early fall (58 samples from 1 site) and late winter (338 samples from 58 sites) diets of barren-ground caribou. Lichens con­stituted ~ 71% of the late winter diets of caribou in northwest Alaska, whereas moss (11%) and shrubs (9%) were the next most common forage items. Early fall diets were very similar to late winter, perhaps because deciduous vegetation is senescent during both periods. Diets of males, non-pregnant females and pregnant females were not significantly different. Pregnancy was not associated with the abundance of any forage type during winter but was associated with higher physiological stress. This result was expected as fall body condition dictates conception, caribou are ‘capital’ breeders, and gestation can be energetically demanding. Caribou that migrated south (i.e., wintered south of 67.1°N) had lower levels of nutritional stress, higher levels of lichen in the diet, and lower levels of moss and shrubs compared to caribou that did not migrate south. Future investigations into the potential connection between lichen abundance in the winter diet and survivorship, as well as linking the late summer diets of individuals to their reproductive success, should be undertaken

    Denning Ecology of Wolves in East-Central Alaska, 1993–2017

    Get PDF
     Dens are a focal point in the life history and ecology of gray wolves (Canis lupus), and their location can influence access to key resources, productivity, survivorship, and vulnerability to hunting, trapping, and control efforts. We analyzed the selection of den sites and the phenology of their use inside the Yukon-Charley River National Preserve from 1993 to 2017 to enhance our understanding of this resource. At the landscape scale, we found that wolves in east-central Alaska selected den sites that were lower in elevation, snow free earlier in the spring, exposed to greater solar radiation, and closer to water. Den sites were also associated with areas that had burned less recently and had lower terrain ruggedness at the 1 km scale. These results supported our hypothesis that wolves would den relatively close to essential resources (water and prey) and in areas that are drier (melt earlier) in the spring. At the home range scale, wolves also selected den sites at lower elevations and showed a strong selection for the center of their home range. Furthermore, the average distance between active den sites was 37.3 km, which is slightly greater than the average radius (32.5 km) of a home range of a pack. Our results support our hypothesis that dynamic social factors modulate the selection of environmental factors for den site location. Wolves den away from other packs to reduce competition and exposure to intraspecific conflict. High-quality denning habitat does not currently appear to be a limiting factor for this population. Females, on average, entered their dens on 10 May, stayed inside the den for eight days, and remained less than 1 km from the den for an additional six days after emerging. We found that wolves denning at higher elevations entered their dens later than those at lower elevations, which also supported one of our hypotheses. Lastly, we documented limited evidence of earlier denning over time. Long-term monitoring projects, such as ours, are critical in identifying these types of trends. Les tanières sont un point central du cycle biologique et de l’écologie du loup gris (Canis lupus). Leur emplacement peut influencer l’accès aux ressources principales, la productivité, la survie et la vulnérabilité à la chasse, au piégeage et aux mesures de contrôle. Afin de mieux comprendre cette ressource, nous avons analysé la sélection des emplacements de tanières et la phénologie de leur utilisation dans la réserve nationale Yukon-Charley Rivers pour les années allant de 1993 à 2017. À l’échelle du paysage, nous avons trouvé que les loups du centre-est de l’Alaska choisissaient des emplacements de tanières en moins grande altitude, plus près de l’eau, où la neige fondait plus vite au printemps et où le rayonnement solaire était plus grand. Par ailleurs, les emplacements des tanières étaient caractérisés par des secteurs brûlés moins récemment et un relief accidenté plus bas à l’échelle de 1 km. Ces résultats ont permis d’appuyer notre hypothèse selon laquelle les loups établiraient leur tanière relativement près des ressources essentielles (eau et proies), dans des endroits plus secs (fonte hâtive) au printemps. À l’échelle du domaine vital, les loups choisissaient aussi des emplacements de tanières en plus faible altitude, avec une forte propension pour le centre de leur domaine. De plus, la distance moyenne entre les tanières actives était de 37,3 km, ce qui est un peu plus grand que le rayon moyen (32,5 km) du domaine vital d’une meute. Nos résultats viennent appuyer notre hypothèse voulant que les facteurs sociodynamiques modulent la sélection de facteurs environnementaux pour l’emplacement des tanières. Les loups établissent leurs tanières à l’écart d’autres meutes afin de réduire la compétition et les possibilités de conflits intraspécifiques. En ce moment, la haute qualité de l’habitat pour l’établissement des tanières ne semble pas être un facteur limitant pour cette population. En moyenne, les femelles s’installaient dans leur tanière le 10 mai, y restaient pendant huit jours et demeuraient à moins d’un kilomètre de leur tanière pendant six autres jours après leur sortie. Nous avons remarqué que les loups optant pour des tanières en plus haute altitude s’y installaient plus tard que ceux en plus faible altitude, ce qui étayait aussi une de nos hypothèses. En dernier lieu, nous avons documenté les preuves restreintes d’établissement plus hâtif dans les tanières au fil des ans. Les projets de surveillance à long terme comme le nôtre jouent un rôle primordial dans la détermination de ces types de tendances. 

    Drivers and mechanisms of migration in an Arctic caribou herd

    Get PDF
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2022Migration is one of the world's great natural wonders and the scale of some migratory journeys is astounding. Yet migration is globally imperiled and effective conservation of the remaining migrations will require a thorough understanding of the drivers and mechanisms underlying how migrants complete such journeys. In this dissertation, I present three chapters that sought to better understand spring and autumn migration for the Western Arctic Herd, a population of barren-ground caribou (Rangifer tarandus) that complete some of the longest terrestrial migrations on the planet. In the first chapter, I applied and validated an analytical method to infer parturition events from GPS data with robust statistical confidence. In the second chapter, I examined the parturition events detected with these methods to better understand the drivers and mechanisms of spring migration because the calving grounds are the destination for pregnant females in spring. I quantified annual spatial patterns of calving and assessed what environmental factors influenced calving site selection by caribou through time. I found evidence of both memory and perception influencing spring migration, such that caribou use memory to return to an area of generally high-quality forage at the time of calving, and consequently adjust calving sites each year based on experienced conditions. In the third chapter, I sought to understand the environmental cues caribou respond to in deciding when to migrate in autumn. I found that decreasing temperatures and the timing of first snowfall events of the season had the greatest influence on migratory movements, but notably, caribou re-assessed decisions throughout the migration period as the conditions they experience changed. I also found that the cues caribou used are similar across individuals despite the herd being broadly dispersed in late summer, and the variability in migration timing observed each year is likely due to variability in environmental conditions experienced across the range. These findings pertaining to the drivers and mechanisms of migratory behavior, and broader aspects of movements by caribou, are highly relevant for conservation and management of the species across the circumpolar North. Moreover, the observation that caribou movement exhibits strong responses to particular climate phenomena, such as temperature and precipitation, have important implications for how caribou might respond as the climate of the Arctic continues to change.National Park Service and Alaska Department of FishIntroduction -- Chapter 1: Movement-based methods to infer parturition events in migratory ungulates -- Chapter 2: Pronounced fidelity and selection for average conditions of calving area suggestive of spatial memory in a highly migratory ungulate -- Chapter 3: Mechanistic movement models identify continuously updated autumn migration cues in Arctic caribou -- Conclusions

    Within-species trade-offs in plant-stimulated soil enzyme activity and growth, flowering, and seed size

    Full text link
    Soil microbial communities affect species demographic rates of plants. In turn, plants influence the composition and function of the soil microbiome, potentially resulting in beneficial feedbacks that alter their fitness and establishment. For example, differences in the ability to stimulate soil enzyme activity among plant lineages may affect plant growth and reproduction. We used a common garden study to test differences in plant-stimulated soil enzyme activity between lineages of the same species across developmental stages. Lineages employed different strategies whereby growth, days to flowering and seed size traded-off with plant-stimulated soil enzyme activity. Specifically, the smaller seeded lineage stimulated more enzyme activity at the early stage of development and flowered earlier while the larger seeded lineage sustained lower but consistent enzyme activity through development. We suggest that these lineages, which are both successful invaders, employ distinct strategies (a colonizer and a competitor) and differ in their influence on soil microbial activity. Synthesis. The ability to influence the soil microbial community by plants may be an important trait that trades off with growth, flowering, and seed size for promoting plant establishment, reproduction, and invasion

    Longitudinally and circumferentially directed movements of the left ventricle studied by cardiovascular magnetic resonance phase contrast velocity mapping

    Get PDF
    OBJECTIVE: Using high resolution cardiovascular magnetic resonance (CMR), we aimed to detect new details of left ventricular (LV) systolic and diastolic function, to explain the twisting and longitudinal movements of the left ventricle. METHODS: Using CMR phase contrast velocity mapping (also called Tissue Phase Mapping) regional wall motion patterns and longitudinally and circumferentially directed movements of the left ventricle were studied using a high temporal resolution technique in healthy male subjects (n = 14, age 23 +/- 3 years). RESULTS: Previously undescribed systolic and diastolic motion patterns were obtained for left ventricular segments (based on the AHA segmental) and for basal, mid and apical segments. The summation of segmental motion results in a complex pattern of ventricular twisting and longitudinal motion in the normal human heart which underlies systolic and diastolic function. As viewed from the apex, the entire LV initially rotates in a counter-clockwise direction at the beginning of ventricular systole, followed by opposing clockwise rotation of the base and counter-clockwise rotation at the apex, resulting in ventricular torsion. Simultaneously, as the entire LV moves in an apical direction during systole, the base and apex move towards each other, with little net apical displacement. The reverse of these motion patterns occur in diastole. CONCLUSION: Left ventricular function may be a consequence of the relative orientations and moments of torque of the sub-epicardial relative to the sub-endocardial myocyte layers, with influence from tethering of the heart to adjacent structures and the directional forces associated with blood flow. Understanding the complex mechanics of the left ventricle is vital to enable these techniques to be used for the evaluation of cardiac pathology

    Sensitivity and threshold dynamics of Pinus strobus and Quercus spp. in response to experimental and naturally-occurring severe droughts

    Get PDF
    Increased drought frequency and severity are a pervasive global threat, yet the capacity of mesic temperate forests to maintain resilience in response to drought remains poorly understood. We deployed a throughfall removal experiment to simulate a once in a century drought in New Hampshire, USA, which coupled with the region-wide 2016 drought, intensified moisture stress beyond that experienced in the lifetimes of our study trees. To assess the sensitivity and threshold dynamics of two dominant northeastern tree genera (Quercus and Pinus), we monitored sap flux density (Js), leaf water potential and gas exchange, growth, and intrinsic water use efficiency (iWUE) for one pretreatment year (2015) and two treatment years (2016-17). Results showed that Js in pine (P. strobus) declined abruptly at a soil moisture threshold of 0.15 m3m-3 , while oak’s (Q. rubra and Q. velutina) threshold was 0.11 m3m-3 — a finding consistent with pine’s more isohydric strategy. Nevertheless, once oaks’ moisture threshold was surpassed, Js declined abruptly, suggesting that while oaks are well-adapted to moderate drought, they are highly susceptible to extreme drought. The radial growth reduction in response to the 2016 drought was more than twice as great for pine than for oaks (50% vs. 18% respectively). Despite relatively high precipitation in 2017, the oaks’ growth continued to decline (low recovery), whereas pine showed neutral (treatment) or improved (control) growth. iWUE increased in 2016 for both treatment and control pines, but only in treatment oaks. Notably, pines exhibited a significant linear relationship between iWUE and precipitation across years, whereas the oaks only showed a response during the driest conditions, further underscoring the different sensitivity thresholds for these species. Our results provide new insights into how interactions between temperate forest tree species’ contrasting physiologies and soil moisture thresholds influence their responses and resilience to extreme drought

    A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer

    Get PDF
    BBSRC (UK) support (BBS/E/W/10964A01A)Lung cancer (LC) is the most prevalent cancer worldwide, and responsible for over 1.3 million deaths each year. Currently, LC has a low five year survival rates relative to other cancers, and thus, novel methods to screen for and diagnose malignancies are necessary to improve patient outcomes. Here, we report on a pilot-sized study to evaluate the potential of the sputum microbiome as a source of non-invasive bacterial biomarkers for lung cancer status and stage. Spontaneous sputum samples were collected from ten patients referred with possible LC, of which four were eventually diagnosed with LC (LC+), and six had no LC after one year (LC-). Of the seven bacterial species found in all samples, Streptococcus viridans was significantly higher in LC+ samples. Seven further bacterial species were found only in LC-, and 16 were found only in samples from LC+. Additional taxonomic differences were identified in regards to significant fold changes between LC+ and LC-cases, with five species having significantly higher abundances in LC+, with Granulicatella adiacens showing the highest level of abundance change. Functional differences, evident through significant fold changes, included polyamine metabolism and iron siderophore receptors. G. adiacens abundance was correlated with six other bacterial species, namely Enterococcus sp. 130, Streptococcus intermedius, Escherichia coli, S. viridans, Acinetobacter junii, and Streptococcus sp. 6, in LC+ samples only, which could also be related to LC stage. Spontaneous sputum appears to be a viable source of bacterial biomarkers which may have utility as biomarkers for LC status and stagepublishersversionPeer reviewe

    Improving pulsar-timing solutions through dynamic pulse fitting

    Full text link
    Precision pulsar timing is integral to the detection of the nanohertz stochastic gravitational-wave background as well as understanding the physics of neutron stars. Conventional pulsar timing often uses fixed time and frequency-averaged templates to determine the pulse times of arrival, which can lead to reduced accuracy when the pulse profile evolves over time. We illustrate a dynamic timing method that fits each observing epoch using basis functions. By fitting each epoch separately, we allow for the evolution of the pulse shape epoch to epoch. We apply our method to PSR J1103−-5403 and demonstrate that it undergoes mode changing, making it the fourth millisecond pulsar to exhibit such behaviour. Our method, which is able to identify and time a single mode, yields a timing solution with a root-mean-square error of 1.343 μs\mu \mathrm{s}, a factor of 1.78 improvement over template fitting on both modes. In addition, the white-noise amplitude is reduced 4.3 times, suggesting that fitting the full data set causes the mode changing to be incorrectly classified as white noise. This reduction in white noise boosts the signal-to-noise ratio of a gravitational-wave background signal for this particular pulsar by 32%. We discuss the possible applications for this method of timing to study pulsar magnetospheres and further improve the sensitivity of searches for nanohertz gravitational waves.Comment: Accepted in MNRAS, 8 pages, 8 figure

    High-resolution Near-Infrared Images and Models of the Circumstellar Disk in HH 30

    Get PDF
    We present Hubble Space Telescope (HST) Near-Infrared Camera and Multi-object Spectrometer (NICMOS) observations of the reflection nebulosity associated with the T Tauri star HH 30. The images show the scattered light pattern characteristic of a highly inclined, optically thick disk with a prominent dustlane whose width decreases with increasing wavelength. The reflected nebulosity exhibits a lateral asymmetry in the upper lobe on the opposite side to that reported in previously published Wide Field Planetary Camera 2 (WFPC2) images. The radiation transfer model which most closely reproduces the data has a flared accretion disk with dust grains larger than standard interstellar medium grains by a factor of approximately 2.1. A single hotspot on the stellar surface provides the necessary asymmetry to fit the images and is consistent with previous modeling of the light curve and images. Photometric analysis results in an estimated extinction of Av>~80; however, since the photometry measures only scattered light rather than direct stellar flux, this a lower limit. The radiative transfer models require an extinction of Av = 7,900.Comment: Accepted for publication in Ap.
    • …
    corecore