4 research outputs found

    Identification and characterization of carboxyl esterases of gill chamber-associated microbiota in the deep-sea shrimp rimicaris exoculata by using functional metagenomics

    Get PDF
    The shrimp Rimicaris exoculata dominates the fauna in deep-sea hydrothermal vent sites along the Mid-Atlantic Ridge (depth, 2,320 m). Here, we identified and biochemically characterized three carboxyl esterases from microbial communities inhabiting the R. exoculata gill that were isolated by naive screens of a gill chamber metagenomic library. These proteins exhibit low to moderate identity to known esterase sequences (<52%) and to each other (11.9 to 63.7%) and appear to have originated from unknown species or from genera of Proteobacteria related to Thiothrix/Leucothrix (MGS-RG1/RG2) and to the Rhodobacteraceae group (MGS-RG3). A library of 131 esters and 31 additional esterase/lipase preparations was used to evaluate the activity profiles of these enzymes. All 3 of these enzymes had greater esterase than lipase activity and exhibited specific activities with ester substrates (<356Umg 1) in the range of similar enzymes. MGS-RG3 was inhibited by salts and pressure and had a low optimal temperature (30°C), and its substrate profile clustered within a group of low-activity and substrate-restricted marine enzymes. In contrast, MGS-RG1 and MGS-RG2 were most active at 45 to 50°C and were salt activated and barotolerant. They also exhibited wider substrate profiles that were close to those of highly active promiscuous enzymes from a marine hydrothermal vent (MGS-RG2) and from a cold brackish lake (MGS-RG1). The data presented are discussed in the context of promoting the examination of enzyme activities of taxa found in habitats that have been neglected for enzyme prospecting; the enzymes found in these taxa may reflect distinct habitat-specific adaptations and may constitute new sources of rare reaction specificities.The European Community project MAMBA (FP7-KBBE-2008-226977), grant BIO2011-25012 from the Spanish Ministry of the Economy and Competitiveness (formerly MICINN). P.N.G. and O.V.G. were supported by EU FP7 project MICROB3 (FP7-OCEAN.2011 287589). This work received support from the Government of Canada through Genome Canada and the Ontario Genomics Institute (grant 2009-OGI-ABC-1405 to A.F.Y. and A.S.) and from the U.S. National Institutes of Health (grants GM074942 and GM094585 to A.S. through the Midwest Center for Structural Genomics).http://aem.asm.orgam201

    Ecology and trophic role of Oncholaimus dyvae sp. nov. (Nematoda: Oncholaimidae) from the lucky strike hydrothermal vent field (Mid-Atlantic Ridge)

    Get PDF
    International audienceBackground: Nematodes are an important component of deep-sea hydrothermal vent communities, but only few nematode species are able to cope to the harsh conditions of the most active vent sites. The genus Oncholaimus is known to tolerate extreme geothermal conditions and high sulphide concentrations in shallow water hydrothermal vents, but it was only occasionally reported in deep-sea vents. In this study, we performed morphological, genetic and ecological investigations (including feeding strategies) on an abundant species of Oncholaimus recently discovered at Lucky strike vent field on the Mid-Atlantic Ridge at 1700 m water depth. Results: We described this species as Oncholaimus dyvae sp. nov.. This new species differs from all other members of the genus by the combination of the following characters: body length (up to 9 mm), the presence of a long spicule (79 mu m) with a distally pointed end, a complex pericloacal setal ornamentation with one precloacal papilla surrounded by short spines, and a body cuticule with very fine striation shortly posterior to the amphid opening. Overall, O. dyvae sp. nov. abundance increased with increasing temperature and vent emissions. Carbon isotopic ratios suggest that this species could consume both thiotroph and methanotrophic producers. Furthermore sulfur-oxidizing bacteria related to Epsilonproteobacteria and Gammaproteobacteria were detected in the cuticle, in the digestive cavity and in the intestine of O. dyvae sp. nov. suggesting a potential symbiotic association. Conclusions: This study improves our understanding of vent biology and ecology, revealing a new nematode species able to adapt and be very abundant in active vent areas due to their association with chemosynthetic micro-organisms. Faced by the rapid increase of anthropogenic pressure to access mineral resources in the deep sea, hydrothermal vents are particularly susceptible to be impacted by exploitation of seafloor massive sulfide deposits. It is necessary to document and understand vent species able to flourish in these peculiar ecosystems

    Identification and Characterization of Carboxyl Esterases of Gill Chamber-Associated Microbiota in the Deep-Sea Shrimp Rimicaris exoculata by Using Functional Metagenomics

    Get PDF
    The shrimp Rimicaris exoculata dominates the fauna in deep-sea hydrothermal vent sites along the Mid-Atlantic Ridge (depth, 2,320 m). Here, we identified and biochemically characterized three carboxyl esterases from microbial communities inhabiting the R. exoculata gill that were isolated by naive screens of a gill chamber metagenomic library. These proteins exhibit low to moderate identity to known esterase sequences (<= 52%) and to each other (11.9 to 63.7%) and appear to have originated from unknown species or from genera of Proteobacteria related to Thiothrix/Leucothrix (MGS-RG1/RG2) and to the Rhodobacteraceae group (MGS-RG3). A library of 131 esters and 31 additional esterase/lipase preparations was used to evaluate the activity profiles of these enzymes. All 3 of these enzymes had greater esterase than lipase activity and exhibited specific activities with ester substrates (<= 356 U mg(-1)) in the range of similar enzymes. MGS-RG3 was inhibited by salts and pressure and had a low optimal temperature (30 degrees C), and its substrate profile clustered within a group of low-activity and substrate-restricted marine enzymes. In contrast, MGS-RG1 and MGS-RG2 were most active at 45 to 50 degrees C and were salt activated and barotolerant. They also exhibited wider substrate profiles that were close to those of highly active promiscuous enzymes from a marine hydrothermal vent (MGS-RG2) and from a cold brackish lake (MGS-RG1). The data presented are discussed in the context of promoting the examination of enzyme activities of taxa found in habitats that have been neglected for enzyme prospecting; the enzymes found in these taxa may reflect distinct habitat-specific adaptations and may constitute new sources of rare reaction specificities
    corecore