83 research outputs found

    Using Residential History and Groundwater Modeling to Examine Drinking Water Exposure and Breast Cancer

    Get PDF
    BACKGROUND. Spatial analyses of case-control data have suggested a possible link between breast cancer and groundwater plumes in upper Cape Cod, Massachusetts. OBJECTIVE. We integrated residential histories, public water distribution systems, and groundwater modeling within geographic information systems (GIS) to examine the association between exposure to drinking water that has been contaminated by wastewater effluent and breast cancer. METHODS. Exposure was assessed from 1947 to 1993 for 638 breast cancer cases who were diagnosed from 1983 to 1993 and 842 controls; we took into account residential mobility and drinking water source. To estimate the historical impact of effluent on drinking water wells, we modified a modular three-dimensional finite-difference groundwater model (MODFLOW) from the U.S. Geological Survey. The analyses included latency and exposure duration. RESULTS. Wastewater effluent impacted the drinking water wells of study participants as early as 1966. For > 0-5 years of exposure (versus no exposure), associations were generally null. Adjusted odds ratios (AORs) for > 10 years of exposure were slightly increased, assuming latency periods of 0 or 10 years [AOR = 1.3; 95% confidence interval (CI), 0.9-1.9 and AOR = 1.6; 95% CI, 0.8-3.2, respectively]. Statistically significant associations were estimated for ever-exposed versus never-exposed women when a 20-year latency period was assumed (AOR = 1.9; 95% CI, 1.0-3.4). A sensitivity analysis that classified exposures assuming lower well-pumping rates showed similar results. CONCLUSION. We investigated the hypothesis generated by earlier spatial analyses that exposure to drinking water contaminated by wastewater effluent may be associated with breast cancer. Using a detailed exposure assessment, we found an association with breast cancer that increased with longer latency and greater exposure duration.National Cancer Institute (5R03CA119703-02); National Institute of Environmental Health Sciences (5P42 ES007381

    RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences

    Get PDF
    Background Repeat-induced point mutation (RIP) is a fungal-specific genome defence mechanism that alters the sequences of repetitive DNA, thereby inactivating coding genes. Repeated DNA sequences align between mating and meiosis and both sequences undergo C:G to T:A transitions. In most fungi these transitions preferentially affect CpA di-nucleotides thus altering the frequency of certain di-nucleotides in the affected sequences. The majority of previously published in silico analyses were limited to the comparison of ratios of pre- and post-RIP di-nucleotides in putatively RIP-affected sequences – so-called RIP indices. The analysis of RIP is significantly more informative when comparing sequence alignments of repeated sequences. There is, however, a dearth of bioinformatics tools available to the fungal research community for alignment-based RIP analysis of repeat families. Results We present RIPCAL http://www.sourceforge.net/projects/ripcal, a software tool for the automated analysis of RIP in fungal genomic DNA repeats, which performs both RIP index and alignment-based analyses. We demonstrate the ability of RIPCAL to detect RIP within known RIP-affected sequences of Neurospora crassa and other fungi. We also predict and delineate the presence of RIP in the genome of Stagonospora nodorum – a Dothideomycete pathogen of wheat. We show that RIP has affected different members of the S. nodorum rDNA tandem repeat to different extents depending on their genomic contexts. Conclusion The RIPCAL alignment-based method has considerable advantages over RIP indices for the analysis of whole genomes. We demonstrate its application to the recently published genome assembly of S. nodorum

    Contribution of pecan (Carya illinoinensis [Wangenh.| K. Koch) to Sustainable Development Goal 2 under the dual perspective of carbon storage and human nutrition.

    Get PDF
    This work aims to contextualize and analyze the potential contribution of pecan to SDG2 under the dual perspective of carbon storage and human nutrition. Particularly, the study focuses on the pecan agroecosystems in the Americas, representing the most important pecan-producing countries (the United States, Mexico, Brazil, Argentina, Uruguay, and Peru). We observed that pecan is a reliable sink for storing atmospheric C and also for quality nuts with high nutritional density. The Americas, hold a population of ca. 23 M pecan trees, with the younger tree populations and the highest C-storing potential in South America. This pecan tree population has removed 51.3 Mt CO2eq immobilizing the OC in their aboveground biomass, but if the C sequestration for the whole system is considered, the value reaches nearly 80 Mt CO2eq. From a nutritional perspective, there are different dietary needs to cover according to the country, although the common analysis output is a low proportion of nuts in the diet, which is expected to improve, given the efforts of each country to promote domestic consumption. All the mentioned countries in this study have a low pecan consumption going from 8 to 293 g per capita yr-1, which in the light of the Global Burden of Disease represents 0.08 to 3.2% of the recommended yearly dietary basis for nuts overall. The inclusion of pecan nuts in the daily diet is of utmost importance to offset the food nutrient dilution carbohydrates-based, linked to the excess of atmospheric CO2. Also, pecan orchards function as a platform to integrate sustainable systems. The global benefit of having pecan and alley crops has been proved in regions other than the Americas with interesting economic outputs leading to energizing the life of rural communities. Pecan orchards and pecan agroforestry may lead to sustainable agri-food systems, with global gains in SOC and nutritional richness and diversity. Therefore, more in-depth studies are needed not only to fully understand the functioning of the systems at a productive level but also to design and plan sustainable landscapes in rural land.Published 14 April 2023

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    The methylated component of the Neurospora crassa genome

    Get PDF
    Cytosine methylation is common, but not ubiquitous, in eukaryotes. Mammals (1) and the fungus Neurospora crassa (2,3) have about 2–3% of cytosines methylated. In mammals, methylation is almost exclusively in the under-represented CpG dinucleotides, and most CpGs are methylated (1) whereas in Neurospora, methylation is not preferentially in CpG dinucleotides and the bulk of the genome is unmethylated (4). DNA methylation is essential in mammals (5) but is dispensable in Neurospora (3,6) making this simple eukaryote a favoured organism in which to study methylation. Recent studies indicate that DNA methylation in Neurospora depends on one DNA methyltransferase, DIM-2 (ref. 6), directed by a histone H3 methyltransferase, DIM-5 (ref. 7), but little is known about its cellular and evolutionary functions. As only four methylated sequences have been reported previously in N. crassa, we used methyl-binding-domain agarose chromatography (8) to isolate the methylated component of the genome. DNA sequence analysis shows that the methylated component of the genome consists almost exclusively of relics of transposons that were subject to repeat-induced point mutation—a genome defence system that mutates duplicated sequences (9)

    A Cytosine Methyltransferase Homologue Is Essential for Sexual Development in Aspergillus nidulans

    Get PDF
    Background: The genome defense processes RIP (repeat-induced point mutation) in the filamentous fungus Neurospora crassa, and MIP (methylation induced premeiotically) in the fungus Ascobolus immersus depend on proteins with DNA methyltransferase (DMT) domains. Nevertheless, these proteins, RID and Masc1, respectively, have not been demonstrated to have DMT activity. We discovered a close homologue in Aspergillus nidulans, a fungus thought to have no methylation and no genome defense system comparable to RIP or MIP. Principal Findings: We report the cloning and characterization of the DNA methyltransferase homologue A (dmtA) gene from Aspergillus nidulans. We found that the dmtA locus encodes both a sense (dmtA) and an anti-sense transcript (tmdA). Both transcripts are expressed in vegetative, conidial and sexual tissues. We determined that dmtA, but not tmdA, is required for early sexual development and formation of viable ascospores. We also tested if DNA methylation accumulated in any of the dmtA/tmdA mutants we constructed, and found that in both asexual and sexual tissues, these mutants, just like wild-type strains, appear devoid of DNA methylation. Conclusions/Significance: Our results demonstrate that a DMT homologue closely related to proteins implicated in RIP and MIP has an essential developmental function in a fungus that appears to lack both DNA methylation and RIP or MIP. It remains formally possible that DmtA is a bona fide DMT, responsible for trace, undetected DNA methylation that i

    DNA Methylation and Normal Chromosome Behavior in Neurospora Depend on Five Components of a Histone Methyltransferase Complex, DCDC

    Get PDF
    Methylation of DNA and of Lysine 9 on histone H3 (H3K9) is associated with gene silencing in many animals, plants, and fungi. In Neurospora crassa, methylation of H3K9 by DIM-5 directs cytosine methylation by recruiting a complex containing Heterochromatin Protein-1 (HP1) and the DIM-2 DNA methyltransferase. We report genetic, proteomic, and biochemical investigations into how DIM-5 is controlled. These studies revealed DCDC, a previously unknown protein complex including DIM-5, DIM-7, DIM-9, CUL4, and DDB1. Components of DCDC are required for H3K9me3, proper chromosome segregation, and DNA methylation. DCDC-defective strains, but not HP1-defective strains, are hypersensitive to MMS, revealing an HP1-independent function of H3K9 methylation. In addition to DDB1, DIM-7, and the WD40 domain protein DIM-9, other presumptive DCAFs (DDB1/CUL4 associated factors) co-purified with CUL4, suggesting that CUL4/DDB1 forms multiple complexes with distinct functions. This conclusion was supported by results of drug sensitivity tests. CUL4, DDB1, and DIM-9 are not required for localization of DIM-5 to incipient heterochromatin domains, indicating that recruitment of DIM-5 to chromatin is not sufficient to direct H3K9me3. DIM-7 is required for DIM-5 localization and mediates interaction of DIM-5 with DDB1/CUL4 through DIM-9. These data support a two-step mechanism for H3K9 methylation in Neurospora

    Learning to live together: mutualism between self-splicing introns and their hosts

    Get PDF
    Group I and II introns can be considered as molecular parasites that interrupt protein-coding and structural RNA genes in all domains of life. They function as self-splicing ribozymes and thereby limit the phenotypic costs associated with disruption of a host gene while they act as mobile DNA elements to promote their spread within and between genomes. Once considered purely selfish DNA elements, they now seem, in the light of recent work on the molecular mechanisms regulating bacterial and phage group I and II intron dynamics, to show evidence of co-evolution with their hosts. These previously underappreciated relationships serve the co-evolving entities particularly well in times of environmental stress

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∌5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis
    • 

    corecore