97 research outputs found

    Inducible nitric oxide synthase (iNOS) expression in monocytes during acute Dengue Fever in patients and during in vitro infection

    Get PDF
    ABSTRACT: Mononuclear phagocytes are considered to be main targets for Dengue Virus (DENV) replication. These cells are activated after infection, producing proinflammatory mediators, including tumour-necrosis factor-α, which has also been detected in vivo. Nitric oxide (NO), usually produced by activated mononuclear phagocytes, has antimicrobial and antiviral activities. METHODS: The expression of DENV antigens and inducible nitric oxide synthase (iNOS) in human blood isolated monocytes were analysed by flow cytometry using cells either from patients with acute Dengue Fever or after DENV-1 in vitro infection. DENV-1 susceptibility to iNOS inhibition and NO production was investigated using N(G)-methyl L-Arginine (N(G)MLA) as an iNOS inhibitor, which was added to DENV-1 infected human monocytes, and sodium nitroprussiate (SNP), a NO donor, added to infected C6/36 mosquito cell clone. Viral antigens after treatments were detected by flow cytometry analysis. RESULTS: INOS expression in activated monocytes was observed in 10 out of 21 patients with Dengue Fever and was absent in cells from ten healthy individuals. DENV antigens detected in 25 out of 35 patients, were observed early during in vitro infection (3 days), significantly diminished with time, indicating that virus replicated, however monocytes controlled the infection. On the other hand, the iNOS expression was detected at increasing frequency in in vitro infected monocytes from three to six days, exhibiting an inverse relationship to DENV antigen expression. We demonstrated that the detection of the DENV-1 antigen was enhanced during monocyte treatment with N(G)MLA. In the mosquito cell line C6/36, virus detection was significantly reduced in the presence of SNP, when compared to that of untreated cells. CONCLUSION: This study is the first to reveal the activation of DENV infected monocytes based on induction of iNOS both in vivo and in vitro, as well as the susceptibility of DENV-1 to a NO production

    Survivorship of Anopheles darlingi (Diptera: Culicidae) in Relation with Malaria Incidence in the Brazilian Amazon

    Get PDF
    We performed a longitudinal study of adult survival of Anopheles darlingi, the most important vector in the Amazon, in a malarigenous frontier zone of Brazil. Survival rates were determined from both parous rates and multiparous dissections. Anopheles darlingi human biting rates, daily survival rates and expectation of life where higher in the dry season, as compared to the rainy season, and were correlated with malaria incidence. The biting density of mosquitoes that had survived long enough for completing at least one sporogonic cycle was related with the number of malaria cases by linear regression. Survival rates were the limiting factor explaining longitudinal variations in Plasmodium vivax malaria incidence and the association between adult mosquito survival and malaria was statistically significant by logistic regression (P<0.05). Survival rates were better correlated with malaria incidence than adult mosquito biting density. Mathematical modeling showed that P. falciparum and P. malariae were more vulnerable to changes in mosquito survival rates because of longer sporogonic cycle duration, as compared to P. vivax, which could account for the low prevalence of the former parasites observed in the study area. Population modeling also showed that the observed decreases in human biting rates in the wet season could be entirely explained by decreases in survival rates, suggesting that decreased breeding did not occur in the wet season, at the sites where adult mosquitoes were collected. For the first time in the literature, multivariate methods detected a statistically significant inverse relation (P<0.05) between the number of rainy days per month and daily survival rates, suggesting that rainfall may cause adult mortality

    Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea

    Get PDF
    The phylogenetic diversity and abundance of ammonia-oxidizing beta-proteobacteria (beta-AOB) was analyzed along an anthropogenic pollution gradient from the coastal Pearl River Delta to the South China Sea using the ammonia monooxygenase subunit A (amoA) gene. Along the gradient from coastal to the open ocean, the phylogenetic diversity of the dominant genus changed from Nitrosomonas to Nitrosospira, indicating the niche specificity by these two genera as both salinity and anthropogenic influence were major factors involved. The diversity of bacterial amoA gene was also variable along the gradient, with the highest in the deep-sea sediments, followed by the marshes sediments and the lowest in the coastal areas. Within the Nitrosomonas-related clade, four distinct lineages were identified including a putative new one (A5-16) from the different sites over the large geographical area. In the Nitrosospira-related clade, the habitat-specific lineages to the deep-sea and coastal sediments were identified. This study also provides strong support that Nitrosomonas genus, especially Nitrosomonas oligotropha lineage (6a) could be a potential bio-indicator species for pollution or freshwater/wastewater input into coastal environments. A suite of statistical analyses used showed that water depth and temperature were major factors shaping the community structure of beta-AOB in this study area
    • …
    corecore