10,167 research outputs found

    The band gap problem: the accuracy of the Wien2k code confronted

    Full text link
    This paper is a continuation of our detailed study [Phys. Rev. B 86, 195106 (2012)] of the performance of the recently proposed modified Becke-Jonhson potential (mBJLDA) within the known Wien2k code. From the 41 semiconductors that we have considered in our previous paper to compute the band gap value, we selected 27 for which we found low temperature experimental data in order to pinpoint the relative situation of the newly proposed Wien2k(mBJLDA) method as compared to other methods in the literature. We found that the GWA gives the most accurate predictions. The Wien2k (mBJLDA) code is slightly less precise, in general. The Hybrid functionals are less accurate, on the overall. The GWA is definitely the most precise existing method nowadays. In 88% of the semiconductors considered the error was less than 10%. Both, the GWA and the mBJLDA potential, reproduce the band gap of 15 of the 27 semiconductors considered with a 5% error or less. An extra factor to be taken into account is the computational cost. If one would seek for precision without taking this factor into account, the GWA is the method to use. If one would prefer to sacrifice a little the precision obtained against the savings in computational cost, the empirical mBJLDA potential seems to be the appropriate method. We include a graph that compares directly the performance of the best three methods, according to our analysis, for each of the 27 semiconductors studied. The situation is encouraging but the problem is not yet a closed issue.Comment: 8 pages, 1 figur

    Vevacious: A Tool For Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars

    Get PDF
    Several extensions of the Standard Model of particle physics contain additional scalars implying a more complex scalar potential compared to that of the Standard Model. In general these potentials allow for charge and/or color breaking minima besides the desired one with correctly broken SU(2)_L times U(1)_Y . Even if one assumes that a metastable local minimum is realized, one has to ensure that its lifetime exceeds that of our universe. We introduce a new program called Vevacious which takes a generic expression for a one-loop effective potential energy function and finds all the tree-level extrema, which are then used as the starting points for gradient-based minimization of the one-loop effective potential. The tunneling time from a given input vacuum to the deepest minimum, if different from the input vacuum, can be calculated. The parameter points are given as files in the SLHA format (though is not restricted to supersymmetric models), and new model files can be easily generated automatically by the Mathematica package SARAH. This code uses HOM4PS2 to find all the minima of the tree-level potential, PyMinuit to follow gradients to the minima of the one-loop potential, and CosmoTransitions to calculate tunneling times.Comment: 44 pages, 1 figure, manual for publicly available software, v2 corresponds to version accepted for publication in EPJC [clearer explanation of scale dependence and region of validity, explicit mention that SLHA files should have blocks matching those expected by model files, updated references

    Weyl geometry, anti-De Sitter space, and Φ4\Phi^4-theory

    Full text link
    We study the Gaussian approximation to the quantum fluctuations of the metric of the four dimensional anti-De Sitter spacetime. The associated massless scalar field has a quartic self interaction, for which we construct the generating functional of the nn-point correlation functions. The concomitant infrared divergence is cured by a mass renormalization provided by the cosmological constant, which is also responsible for the renormalization of the coupling constant of the field theory.Comment: 9 pages, 1 figur
    corecore