6 research outputs found

    In Vitro Cultivation of 'Unculturable' Oral Bacteria, Facilitated by Community Culture and Media Supplementation with Siderophores

    Get PDF
    Over a third of oral bacteria are as-yet-uncultivated in-vitro. Siderophores have been previously shown to enable in-vitro growth of previously uncultivated bacteria. The objective of this study was to cultivate novel oral bacteria in siderophore-supplemented culture media. Various compounds with siderophore activity, including pyoverdines-Fe-complex, desferricoprogen and salicylic acid, were found to stimulate the growth of difficult-to-culture strains Prevotella sp. HOT-376 and Fretibacterium fastidiosum. Furthermore, pyrosequencing analysis demonstrated increased proportions of the as-yet-uncultivated phylotypes Dialister sp. HOT-119 and Megasphaera sp. HOT-123 on mixed culture plates supplemented with siderophores. Therefore a culture model was developed, which incorporated 15 μg siderophore (pyoverdines-Fe-complex or desferricoprogen) or 150 μl neat subgingival-plaque suspension into a central well on agar plates that were inoculated with heavily-diluted subgingival-plaque samples from subjects with periodontitis. Colonies showing satellitism were passaged onto fresh plates in co-culture with selected helper strains. Five novel strains, representatives of three previously-uncultivated taxa (Anaerolineae bacterium HOT-439, the first oral taxon from the Chloroflexi phylum to have been cultivated; Bacteroidetes bacterium HOT-365; and Peptostreptococcaceae bacterium HOT-091) were successfully isolated. All novel isolates required helper strains for growth, implying dependence on a biofilm lifestyle. Their characterisation will further our understanding of the human oral microbiome

    First Cultivation of Health-Associated Tannerella sp HOT-286 (BU063)

    Get PDF
    Research reported in this publication was supported by the National Institute of Dental and Craniofacial Research of the National Institutes of Health under awards R37DE016937 and R01DE 024468

    Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations.

    No full text
    Candidate phyla radiation (CPR) bacteria and DPANN (an acronym of the names of the first included phyla) archaea are massive radiations of organisms that are widely distributed across Earth's environments, yet we know little about them. Initial indications are that they are consistently distinct from essentially all other bacteria and archaea owing to their small cell and genome sizes, limited metabolic capacities and often episymbiotic associations with other bacteria and archaea. In this Analysis, we investigate their biology and variations in metabolic capacities by analysis of approximately 1,000 genomes reconstructed from several metagenomics-based studies. We find that they are not monolithic in terms of metabolism but rather harbour a diversity of capacities consistent with a range of lifestyles and degrees of dependence on other organisms. Notably, however, certain CPR and DPANN groups seem to have exceedingly minimal biosynthetic capacities, whereas others could potentially be free living. Understanding of these microorganisms is important from the perspective of evolutionary studies and because their interactions with other organisms are likely to shape natural microbiome function
    corecore