6 research outputs found

    Absence of cardiotrophin 1 is associated with decreased age-dependent arterial stiffness and increased longevity in mice

    Get PDF
    Cardiotrophin 1 (CT-1), an interleukin 6 family member, promotes fibrosis and arterial stiffness. We hypothesized that the absence of CT-1 influences arterial fibrosis and stiffness, senescence, and life span. In senescent 29-month- old mice, vascular function was analyzed by echotracking device. Arterial histomorphology, senescence, metabolic, inflammatory, and oxidative stress parameters were measured by immunohistochemistry, reverse transcription polymerase chain reaction, Western blot, and ELISA. Survival rate of wild-type and CT-1–null mice was studied. Vascular smooth muscle cells were treated with CT-1 (10 −9 mol/L) for 15 days to analyze senescence. The wall stress-incremental elastic modulus curve of old CT-1–null mice was shifted rightward as compared with wild-type mice, indicating decreased arterial stiffness. Media thickness and wall fibrosis were lower in CT-1–null mice. CT-1–null mice showed decreased levels of inflammatory, apoptotic, and senescence pathways, whereas telomere-linked proteins, DNA repair proteins, and antioxidant enzyme activities were increased. CT-1–null mice displayed a 5-month increased median longevity compared with wild-type mice. In vascular smooth muscle cells, chronic CT-1 stimulation upregulated apoptotic and senescence markers and downregulated telomere-linked proteins. The absence of CT-1 is associated with decreased arterial fibrosis, stiffness, and senescence and increased longevity in mice likely through downregulating apoptotic, senescence, and inflammatory pathways. CT-1 may be a major regulator of arterial stiffness with a major impact on the aging proces

    Cardiotrophin 1 is involved in cardiac, vascular, and renal fibrosis and dysfunction

    Get PDF
    Cardiotrophin 1 (CT-1), a cytokine belonging to the interleukin 6 family, is increased in hypertension and in heart failure. We aimed to study the precise role of CT-1 on cardiac, vascular, and renal function; morphology; and remodeling in early stages without hypertension. CT-1 (20 g/kg per day) or vehicle was administrated to Wistar rats for 6 weeks. Cardiac and vascular functions were analyzed in vivo using M-mode echocardiography, Doppler, and echo tracking device and ex vivo using a scanning acoustic microscopy method. Cardiovascular and renal histomorphology were measured by immunohistochemistry, RT-PCR, and Western blot. Kidney functional properties were assessed by serum creatinine and neutrophile gelatinase-associated lipocalin and microalbuminuria/creatininuria ratio. Without alterations in blood pressure levels, CT-1 treatment increased left ventricular volumes, reduced fractional shortening and ejection fraction, and induced myocardial dilatation and myocardial fibrosis. In the carotid artery of CT-1–treated rats, the circumferential wall stress-incremental elastic modulus curve was shifted leftward, and the acoustic speed of sound in the aorta was augmented, indicating increased arterial stiffness. Vascular media thickness, collagen, and fibronectin content were increased by CT-1 treatment. CT-1–treated rats presented unaltered serum creatinine concentrations but increased urinary and serum neutrophile gelatinase-associated lipocalin and microalbuminuria/creatininuria ratio. This paralleled a glomerular and tubulointerstitial fibrosis accompanied by renal epithelial-mesenchymal transition. CT-1 is a new potent fibrotic agent in heart, vessels, and kidney able to induce cardiovascular-renal dysfunction independent from blood pressure. Thus, CT-1 could be a new target simultaneously integrating alterations of heart, vessels, and kidney in early stages of heart failure

    Absence of cardiotrophin 1 is associated with decreased age-dependent arterial stiffness and increased longevity in mice

    No full text
    Cardiotrophin 1 (CT-1), an interleukin 6 family member, promotes fibrosis and arterial stiffness. We hypothesized that the absence of CT-1 influences arterial fibrosis and stiffness, senescence, and life span. In senescent 29-month- old mice, vascular function was analyzed by echotracking device. Arterial histomorphology, senescence, metabolic, inflammatory, and oxidative stress parameters were measured by immunohistochemistry, reverse transcription polymerase chain reaction, Western blot, and ELISA. Survival rate of wild-type and CT-1–null mice was studied. Vascular smooth muscle cells were treated with CT-1 (10 −9 mol/L) for 15 days to analyze senescence. The wall stress-incremental elastic modulus curve of old CT-1–null mice was shifted rightward as compared with wild-type mice, indicating decreased arterial stiffness. Media thickness and wall fibrosis were lower in CT-1–null mice. CT-1–null mice showed decreased levels of inflammatory, apoptotic, and senescence pathways, whereas telomere-linked proteins, DNA repair proteins, and antioxidant enzyme activities were increased. CT-1–null mice displayed a 5-month increased median longevity compared with wild-type mice. In vascular smooth muscle cells, chronic CT-1 stimulation upregulated apoptotic and senescence markers and downregulated telomere-linked proteins. The absence of CT-1 is associated with decreased arterial fibrosis, stiffness, and senescence and increased longevity in mice likely through downregulating apoptotic, senescence, and inflammatory pathways. CT-1 may be a major regulator of arterial stiffness with a major impact on the aging proces
    corecore