44 research outputs found

    Cross-layer framework and optimization for efficient use of the energy budget of IoT Nodes

    Full text link
    Both physical and MAC-layer need to be jointly optimized to maximize the autonomy of IoT devices. Therefore, a cross-layer design is imperative to effectively realize Low Power Wide Area networks (LPWANs). In the present paper, a cross-layer assessment framework including power modeling is proposed. Through this simulation framework, the energy consumption of IoT devices, currently deployed in LoRaWAN networks, is evaluated. We demonstrate that a cross-layer approach significantly improves energy efficiency and overall throughput. Two major contributions are made. First, an open-source LPWAN assessment framework has been conceived. It allows testing and evaluating hypotheses and schemes. Secondly, as a representative case, the LoRaWAN protocol is assessed. The findings indicate how a cross-layer approach can optimize LPWANs in terms of energy efficiency and throughput. For instance, it is shown that the use of larger payloads can reduce up to three times the energy consumption on quasi-static channels yet may bring an energy penalty under adverse dynamic conditions

    A Light Signalling Approach to Node Grouping for Massive MIMO IoT Networks

    Full text link
    Massive MIMO is a promising technology to connect very large numbers of energy constrained nodes, as it offers both extensive spatial multiplexing and large array gain. A challenge resides in partitioning the many nodes in groups that can communicate simultaneously such that the mutual interference is minimized. We here propose node partitioning strategies that do not require full channel state information, but rather are based on nodes' respective directional channel properties. In our considered scenarios, these typically have a time constant that is far larger than the coherence time of the channel. We developed both an optimal and an approximation algorithm to partition users based on directional channel properties, and evaluated them numerically. Our results show that both algorithms, despite using only these directional channel properties, achieve similar performance in terms of the minimum signal-to-interference-plus-noise ratio for any user, compared with a reference method using full channel knowledge. In particular, we demonstrate that grouping nodes with related directional properties is to be avoided. We hence realise a simple partitioning method requiring minimal information to be collected from the nodes, and where this information typically remains stable over a long term, thus promoting their autonomy and energy efficiency

    Dynamic Federations for 6G Cell-Free Networking: Concepts and Terminology

    Get PDF
    Cell-Free networking is one of the prime candidates for 6G networks. Despite being capable of providing the 6G needs, practical limitations and considerations are often neglected in current research. In this work, we introduce the concept of federations to dynamically scale and select the best set of resources, e.g., antennas, computing and data resources, to serve a given application. Next to communication, 6G systems are expected to provide also wireless powering, positioning and sensing, further increasing the complexity of such systems. Therefore, each federation is self-managing and is distributed over the area in a cell-free manner. Next to the dynamic federations, new accompanying terminology is proposed to design cell-free systems taking into account practical limitations such as time synchronization and distributed processing. We conclude with an illustration with four federations, serving distinct applications, and introduce two new testbeds to study these architectures and concepts

    Dynamic Federations for 6G Cell-Free Networking: Concepts and Terminology

    Get PDF
    Cell-Free networking is one of the prime candidatesfor 6G networks. Despite being capable of providing the 6Gneeds, practical limitations and considerations are often neglectedin current research. In this work, we introduce the conceptof federations to dynamically scale and select the best set ofresources, e.g., antennas, computing and data resources, to servea given application. Next to communication, 6G systems are expected to provide also wireless powering, positioning and sensing,further increasing the complexity of such systems. Therefore,each federation is self-managing and is distributed over thearea in a cell-free manner. Next to the dynamic federations,new accompanying terminology is proposed to design cell-freesystems taking into account practical limitations such as timesynchronization and distributed processing. We conclude withan illustration with four federations, serving distinct applications,and introduce two new testbeds to study these architectures andconcepts

    Multi-RAT IoT -- What's to Gain? An Energy-Monitoring Platform

    Full text link
    Multiple LPWANs have been rolled out to support the variety of IoT applications that are crucial to the ongoing digital transformation. These networks vary largely in terms of quality-of-service, throughput and energy-efficiency. To cover all LPWAN use-cases most optimally, multiple networks can be combined into a multiple radio access technology (multi-RAT) solution. In particular environmental monitoring in both smart city and remote landscapes. We present and share such a multi-RAT platform. To derive an accurate profile of the multi-RAT opportunities in various scenarios, in the-field network parameter are monitored. The platform collects per-packet energy-consumption, packet delivery ratio (PDR) and other parameters of LoRaWAN, NB-IoT and Sigfox. Our preliminary measurements demonstrate the validity of using a multi-RAT solution. For example, we illustrate the potential energy savings when adopting multi-RAT in various scenarios

    6G Radio Testbeds: Requirements, Trends, and Approaches

    Full text link
    The proof of the pudding is in the eating - that is why 6G testbeds are essential in the progress towards the next generation of wireless networks. Theoretical research towards 6G wireless networks is proposing advanced technologies to serve new applications and drastically improve the energy performance of the network. Testbeds are indispensable to validate these new technologies under more realistic conditions. This paper clarifies the requirements for 6G radio testbeds, reveals trends, and introduces approaches towards their development
    corecore