1,677 research outputs found

    Comment on "Breakdown of the Internet under Intentional Attack"

    Full text link
    We obtain the exact position of the percolation threshold in intentionally damaged scale-free networks.Comment: 1 page, to appear in Phys. Rev. Let

    A priori Wannier functions from modified Hartree-Fock and Kohn-Sham equations

    Full text link
    The Hartree-Fock equations are modified to directly yield Wannier functions following a proposal of Shukla et al. [Chem. Phys. Lett. 262, 213-218 (1996)]. This approach circumvents the a posteriori application of the Wannier transformation to Bloch functions. I give a novel and rigorous derivation of the relevant equations by introducing an orthogonalizing potential to ensure the orthogonality among the resulting functions. The properties of these, so-called a priori Wannier functions, are analyzed and the relation of the modified Hartree-Fock equations to the conventional, Bloch-function-based equations is elucidated. It is pointed out that the modified equations offer a different route to maximally localized Wannier functions. Their computational solution is found to involve an effort that is comparable to the effort for the solution of the conventional equations. Above all, I show how a priori Wannier functions can be obtained by a modification of the Kohn-Sham equations of density-functional theory.Comment: 7 pages, RevTeX4, revise

    FIBONACCI SUPERLATTICES OF NARROW-GAP III-V SEMICONDUCTORS

    Get PDF
    We report theoretical electronic structure of Fibonacci superlattices of narrow-gap III-V semiconductors. Electron dynamics is accurately described within the envelope-function approximation in a two-band model. Quasiperiodicity is introduced by considering two different III-V semiconductor layers and arranging them according to the Fibonacci series along the growth direction. The resulting energy spectrum is then found by solving exactly the corresponding effective-mass (Dirac-like) wave equation using tranfer-matrix techniques. We find that a self-similar electronic spectrum can be seen in the band structure. Electronic transport properties of samples are also studied and related to the degree of spatial localization of electronic envelope-functions via Landauer resistance and Lyapunov coefficient. As a working example, we consider type II InAs/GaSb superlattices and discuss in detail our results in this system.Comment: REVTeX 3.0, 16 pages, 8 figures available upon request. To appear in Semiconductor Science and Technolog

    A semi-quantitative scattering theory of amorphous materials

    Full text link
    It is argued that topological disorder in amorphous solids can be described by local strains related to local reference crystals and local rotations. An intuitive localization criterion is formulated from this point of view. The Inverse Participation Ratio and the location of mobility edges in band tails is directly related to the character of the disorder potential in amorphous solid, the coordination number, the transition integral and the nodes of wave functions of the corresponding reference crystal. The dependence of the decay rate of band tails on temperature and static disorder are derived. \textit{Ab initio} simulations on a-Si and experiments on a-Si:H are compared to these predictions.Comment: 4 pages, 2 figures, will be submitted to Phys. Rev. Let

    Ising Model on Networks with an Arbitrary Distribution of Connections

    Full text link
    We find the exact critical temperature TcT_c of the nearest-neighbor ferromagnetic Ising model on an `equilibrium' random graph with an arbitrary degree distribution P(k)P(k). We observe an anomalous behavior of the magnetization, magnetic susceptibility and specific heat, when P(k)P(k) is fat-tailed, or, loosely speaking, when the fourth moment of the distribution diverges in infinite networks. When the second moment becomes divergent, TcT_c approaches infinity, the phase transition is of infinite order, and size effect is anomalously strong.Comment: 5 page

    Giant strongly connected component of directed networks

    Full text link
    We describe how to calculate the sizes of all giant connected components of a directed graph, including the {\em strongly} connected one. Just to the class of directed networks, in particular, belongs the World Wide Web. The results are obtained for graphs with statistically uncorrelated vertices and an arbitrary joint in,out-degree distribution P(ki,ko)P(k_i,k_o). We show that if P(ki,ko)P(k_i,k_o) does not factorize, the relative size of the giant strongly connected component deviates from the product of the relative sizes of the giant in- and out-components. The calculations of the relative sizes of all the giant components are demonstrated using the simplest examples. We explain that the giant strongly connected component may be less resilient to random damage than the giant weakly connected one.Comment: 4 pages revtex, 4 figure

    Halting viruses in scale-free networks

    Full text link
    The vanishing epidemic threshold for viruses spreading on scale-free networks indicate that traditional methods, aiming to decrease a virus' spreading rate cannot succeed in eradicating an epidemic. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate a virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. Furthermore, such biased policies are more cost effective, requiring less cures to eradicate the virus

    Generic scale of the "scale-free" growing networks

    Full text link
    We show that the connectivity distributions P(k,t)P(k,t) of scale-free growing networks (tt is the network size) have the generic scale -- the cut-off at kcuttβk_{cut} \sim t^\beta. The scaling exponent β\beta is related to the exponent γ\gamma of the connectivity distribution, β=1/(γ1)\beta=1/(\gamma-1). We propose the simplest model of scale-free growing networks and obtain the exact form of its connectivity distribution for any size of the network. We demonstrate that the trace of the initial conditions -- a hump at khkcuttβk_h \sim k_{cut} \sim t^\beta -- may be found for any network size. We also show that there exists a natural boundary for the observation of the scale-free networks and explain why so few scale-free networks are observed in Nature.Comment: 4 pages revtex, 3 figure

    Electron localization by a magnetic vortex

    Full text link
    We study the problem of an electron in two dimensions in the presence of a magnetic vortex with a step-like profile. Dependending on the values of the effective mass and gyromagnetic factor of the electron, it may be trapped by the vortex. The bound state spectrum is obtained numerically, and some limiting cases are treated analytically.Comment: 8 pages, latex, 4 figure

    Epidemic Incidence in Correlated Complex Networks

    Full text link
    We introduce a numerical method to solve epidemic models on the underlying topology of complex networks. The approach exploits the mean-field like rate equations describing the system and allows to work with very large system sizes, where Monte Carlo simulations are useless due to memory needs. We then study the SIR epidemiological model on assortative networks, providing numerical evidence of the absence of epidemic thresholds. Besides, the time profiles of the populations are analyzed. Finally, we stress that the present method would allow to solve arbitrary epidemic-like models provided that they can be described by mean-field rate equations.Comment: 5 pages, 4 figures. Final version published in PR
    corecore