503 research outputs found

    Learning the Hard Way

    Get PDF
    The October 2000 terrorist attack on the guided-missile destroyer USS Cole (DDG 67) in the port of Aden, Yemen, is commonly viewed in the larger context of al-Qa‘ida’s September 11th campaign. Beyond the initial official investigations, the military force-protection context of the attack has largely been overlooked as analysts have traced the movements of al-Qa‘ida operatives who were traversing the globe at the time. But the proper context of the Cole bombing is a series of terrorist attacks against U.S. military forces abroad that started in 1983

    The Challenge of Restoring Functioning Salt Marsh Ecosystem

    Get PDF
    Substantial improvements have been made in the restoration of coastal salt marshes over the last decade; however, many challenges remain. Some opportunities for improving restoration efforts include: I. Increasing our understanding of the development of restored salt marsh ecosystems over time, especially in comparison to natural marsh development; and identifying the limiting factors that restrict the development of restored salt marshes. II Considering the role of plant species diversity in restored salt marshes. Recent research at Tijuana Estuary has demonstrated that there is a significant effect of plant species diversity on the development of ecosystem functions in a restored salt marsh; further study of these effects is warranted in other salt marsh ecosystems. III. Evaluating the link between physical heterogeneity and ecosystem function. Smelt-scale changes in physical factors, such as elevation or hydrology, are likely to have substantial effects on the development of ecosystem function in restored salt marshes, and these factors should be considered in restoration design. IV. Addressing the potential impacts of exotic plants within restored marshes. Exotic species remain a substantial problem in many restored ecosystems; better efforts are needed to identify appropriate methods to control exotic plants. V. Incorporating scientific approaches into restoration efforts. Rigorously designed scientific experiments that identify cause-effect relationships for the development of restored salt marshes could substantially improve the design, implementation, and monitoring of restoration projects

    Enhancing Ecosystem Services:Private Profitability of Selected Measures

    Get PDF

    Species-Rich Plantings Increase Biomass and Nitrogen Accumulation in a Wetland Restoration Experiment

    Get PDF
    Our test of the hypothesis that biomass and nitrogen would increase with more species-rich plantings simultaneously vegetated a salt marsh restoration site and demonstrated that on average, randomly chosen, 6-species plantings accumulated more biomass and nitrogen than the mean for 0- and 1-species assemblages, with the mean for 3-species assemblages being intermediate. In addition, we found that individual species (from the pool of eight native halophytes) differed in their functional capacity, with Salicornia virginica (Sv) and Jaumea carnosa contributing the greatest biomass when planted alone, while Triglochin concinna had the highest tissue N concentrations. When planted alone, Sv accumulated comparable amounts of biomass and nitrogen as in the multispecies plots, indicating that individual species can have a large effect on particular functions. Soil TKN in the surface 0–5 cm was greater in 6-species plots than unplanted plots in 1999, while both 3- and 6-species plots were greater than unplanted plots in 2000; however, there were no differences at 5–20 cm depth and no species-specific effects. Root and shoot biomass both increased with species richness, with total biomass of 6-species plots averaging 995.6 ± 120.5 g/m2 in 2000, compared to the mean for 1-species plots (572.1 ± 90.3 g/m2) and unplanted plots (164.5 ± 24.7 g/m2). Still, at the age of three years, root biomass was only about one-third that of the species-rich reference site, and shoot biomass was one-half to one-fifth the maxima reported for reference salt marshes. Species-specific effects were found for Sv, which had high biomass of both roots and shoots in the multispecies plots (55% of aboveground biomass in 3-species plots and 41% in 6-species plots) and the highest pool of N (52% of the N pool in 3-species plots and 42% in 6-species plots), even though only one-eighth of the initial plantings were Sv. However, when plots with this species were excluded from the analysis, the species-richness effect persisted. Thus, ecosystem function, as measured by biomass and N accumulation, increased with species richness regardless of dominance by the highly productive Sv. We conclude that manipulating the richness and composition of plantings offers ecosystem restorationists an effective tool for accelerating the rate of functional development

    Vulnerability Assessment

    Get PDF

    Plant Assemblage Composition Explains and Predicts How Biodiversity Affects Salt Marsh Functioning

    Get PDF
    Knowing that diverse plantings enhanced biomass and nitrogen (N) accumulation in a restored California salt marsh, we asked if the “biodiversity effect” was due to species selection or complementarity. In a two-year greenhouse experiment, we found positive biodiversity effects on total, root, and shoot biomass, total and root N crop, and on biomass and N allocation; negative effects on root and shoot N concentration; and no effect on shoot N crop. Overyielding among trios and sextets was supported by significant deviations in observed yield from that expected relative to solo yields (DT). However, both trios and sextets strongly underyielded relative to the highest yielding solo in the assemblage (Dmax) in all attributes, and to the dominant species in the assemblage (Ddom) in most attributes. When we decomposed biodiversity effects on shoot characteristics, selection effects primarily drove over- and underyielding. The only complementarity effect was underyielding of sextet shoot biomass. These analyses were possible because we replicated assemblages and evaluated 11 response variables. One species (Salicornia virginica) dominated functioning when present; when absent, another dominated (e.g., Frankenia salina). Effects varied with the response tested, however. For both shoot biomass and N crop, S. virginica was the dominant overyielding species (based on Dij and comparisons of trios ± target species). For shoot N concentration, however, the dominant was Triglochin concinna, a species that had low biomass but was capable of reducing assemblage performance, presumably by concentrating N. Evidence for strong species selection effects led us to predict that three species would eventually dominate our parallel field experiment that tested the same assemblages. Exactly that happened in nine years, but (we predict) without losing function, because the site retained the three highest-performing species. Biodiversity loss was nonrandom in the field, and because trios with two top performers sustained critical functions in the greenhouse, we predict that many functions will not decline, even if the salt marsh becomes dominated by a single species, e.g., S. virginica. Unmeasured functions (e.g., resilience) might not persist, however. Knowing how assemblages perform made biodiversity–ecosystem function theory both explanatory and predictive

    Diversity-Function Relationships Changed in a Long-Term Restoration Experiment

    Get PDF
    The central tenet of biodiversity-ecosystem function (BEF) theory, that species richness increases function, could motivate restoration practitioners to incorporate a greater number of species into their projects. But it is not yet clear how well BEF theory predicts outcomes of restoration, because it has been developed through tests involving short-run and tightly controlled (e.g., weeded) experiments. Thus, we resampled our 1997 BEF experiment in a restored salt marsh to test for long-term effects of species richness (plantings with 1, 3, and 6 species per 2 x 2 m plot), with multiple ecosystem functions as response variables. Over 11 years, 1- and 6-species assemblages converged on intermediate richness (mean = 3.9 species/ 0.25-m2 plot), and composition changed nonrandomly throughout the site. While three species became rare, the two most productive species became co-dominant. The two dominants controlled and increased shoot biomass, which appeared to decrease species richness. Diversity-function relationships became less positive over 11 years and differed significantly with (a) the species-richness metric (planted vs. measured), and (b) the indicator of function (shoot biomass, height, and canopy layering). The loss of positive relationships between species richness and function in our restored site began soon after we stopped weeding and continued with increasing dominance by productive species. Where species-rich plantings are unlikely to ensure long-term restoration of functions, as in our salt marsh, we recommend dual efforts to establish (1) dominant species that provide high levels of target functions, and (2) subordinate species, which might provide additional functions under current or future conditions
    • 

    corecore