26 research outputs found

    A Smart Region-Growing Algorithm for Single-Neuron Segmentation From Confocal and 2-Photon Datasets

    Get PDF
    Accurately digitizing the brain at the micro-scale is crucial for investigating brain structure-function relationships and documenting morphological alterations due to neuropathies. Here we present a new Smart Region Growing algorithm (SmRG) for the segmentation of single neurons in their intricate 3D arrangement within the brain. Its Region Growing procedure is based on a homogeneity predicate determined by describing the pixel intensity statistics of confocal acquisitions with a mixture model, enabling an accurate reconstruction of complex 3D cellular structures from high-resolution images of neural tissue. The algorithm’s outcome is a 3D matrix of logical values identifying the voxels belonging to the segmented structure, thus providing additional useful volumetric information on neurons. To highlight the algorithm’s full potential, we compared its performance in terms of accuracy, reproducibility, precision and robustness of 3D neuron reconstructions based on microscopic data from different brain locations and imaging protocols against both manual and state-of-the-art reconstruction tools

    Towards a Contactless Stress Classification Using Thermal Imaging

    Get PDF
    Thermal cameras capture the infrared radiation emitted from a body in a contactless manner and can provide an indirect estimation of the autonomic nervous system (ANS) dynamics through the regulation of the skin temperature. This study investigates the contribution given by thermal imaging for an effective automatic stress detection with the perspective of a contactless stress recognition system. To this aim, we recorded both ANS correlates (cardiac, electrodermal, and respiratory activity) and thermal images from 25 volunteers under acute stress induced by the Stroop test. We conducted a statistical analysis on the features extracted from each signal, and we implemented subject-independent classifications based on the support vector machine model with an embedded recursive feature elimination algorithm. Particularly, we trained three classifiers using different feature sets: the full set of features, only those derived from the peripheral autonomic correlates, and only those derived from the thermal images. Classification accuracy and feature selection results confirmed the relevant contribution provided by the thermal features in the acute stress detection task. Indeed, a combination of ANS correlates and thermal features achieved 97.37% of accuracy. Moreover, using only thermal features we could still successfully detect stress with an accuracy of 86.84% in a contact-free manne

    Gotta trace ‘em all: A mini-review on tools and procedures for segmenting single neurons toward deciphering the structural connectome

    Get PDF
    Decoding the morphology and physical connections of all the neurons populating a brain is necessary for predicting and studying the relationships between its form and function, as well as for documenting structural abnormalities in neuropathies. Digitizing a complete and high-fidelity map of the mammalian brain at the micro-scale will allow neuroscientists to understand disease, consciousness, and ultimately what it is that makes us humans. The critical obstacle for reaching this goal is the lack of robust and accurate tools able to deal with 3D datasets representing dense-packed cells in their native arrangement within the brain. This obliges neuroscientist to manually identify the neurons populating an acquired digital image stack, a notably time-consuming procedure prone to human bias. Here we review the automatic and semi-automatic algorithms and software for neuron segmentation available in the literature, as well as the metrics purposely designed for their validation, highlighting their strengths and limitations. In this direction, we also briefly introduce the recent advances in tissue clarification that enable significant improvements in both optical access of neural tissue and image stack quality, and which could enable more efficient segmentation approaches. Finally, we discuss new methods and tools for processing tissues and acquiring images at sub-cellular scales, which will require new robust algorithms for identifying neurons and their sub-structures (e.g., spines, thin neurites). This will lead to a more detailed structural map of the brain, taking twenty-first century cellular neuroscience to the next level, i.e., the Structural Connectome

    Parasympathetic-sympathetic causal interactions assessed by time-varying multivariate autoregressive modeling of electrodermal activity and heart-rate-variability

    Get PDF
    Objective: Most of the bodily functions are regulated by multiple interactions between the parasympathetic (PNS) and sympathetic (SNS) nervous system. In this study, we propose a novel framework to quantify the causal flow of information between PNS and SNS through the analysis of heart rate variability (HRV) and electrodermal activity (EDA) signals. Methods: Our method is based on a time-varying (TV) multivariate autoregressive model of EDA and HRV time-series and incorporates physiologically inspired assumptions by estimating the Directed Coherence in a specific frequency range. The statistical significance of the observed interactions is assessed by a bootstrap procedure purposely developed to infer causalities in the presence of both TV model coefficients and TV model residuals (i.e., heteroskedasticity). We tested our method on two different experiments designed to trigger a sympathetic response, i.e., a hand-grip task (HG) and a mental-computation task (MC). Results: Our results show a parasympathetic driven interaction in the resting state, which is consistent across different studies. The onset of the stressful stimulation triggers a cascade of events characterized by the presence or absence of the PNS-SNS interaction and changes in the directionality. Despite similarities between the results related to the two tasks, we reveal differences in the dynamics of the PNS-SNS interaction, which might reflect different regulatory mechanisms associated with different stressors. Conclusion: We estimate causal coupling between PNS and SNS through MVAR modeling of EDA and HRV time-series. Significance: Our results suggest promising future applicability to investigate more complex contexts such as affective and pathological scenarios

    Cortical network and connectivity underlying hedonic olfactory perception

    Get PDF
    Objective. The emotional response to olfactory stimuli implies the activation of a complex cascade of events triggered by structures lying in the limbic system. However, little is known about how this activation is projected up to cerebral cortex and how different cortical areas dynamically interact each other. Approach. In this study, we acquired EEG from human participants performing a passive odor-perception task with odorants conveying positive, neutral and negative valence. A novel methodological pipeline integrating global field power (GFP), independent component analysis (ICA), dipole source localization was applied to estimate effective connectivity in the challenging scenario of single-trial low-synchronized stimulation. Main results. We identified the brain network and the neural paths, elicited at different frequency bands, i.e. θ (4-7Hz), α (8-12Hz) and β (13-30Hz), involved in odor valence processing. This brain network includes the orbitofrontal cortex (OFC), the cingulate gyrus (CgG), the superior temporal gyrus (STG), the posterior cingulate cortex/precuneus (PCC/PCu) and the parahippocampal gyrus (PHG). It was analyzed using a time-varying multivariate autoregressive model to resolve time-frequency causal interactions. Specifically, the OFC acts as the main node for odor perception and evaluation of pleasant and unpleasant stimuli, whereas no specific path was observed for a neutral stimulus. Significance. The results introduce new evidences on the role of the OFC during hedonic perception and underpin its specificity during the odor valence assessment. Our findings suggest that, after the odor onset different, bidirectional interactions occur between the OFC and other brain regions associated with emotion recognition/categorization and memory according to the stimulus valence. This outcome unveils how the hedonic olfactory network dynamically changes based on odor valence

    Valence, Arousal, and Gender Effect on Olfactory Cortical Network Connectivity: a study using Dynamic Causal Modeling for EEG

    Get PDF
    The cortical network including the piriform (PC), orbitofrontal (OFC), and entorhinal (EC) cortices allows the complex processing of behavioral, cognitive, and context-related odor information and represents an access gate to the subcortical limbic regions. Among the several factors that influence odor processing, their hedonic content and gender differences play a relevant role. Here, we investigated how these factors influence EEG effective connectivity among the mentioned brain regions during emotional olfactory stimuli. To this aim, we acquired EEG data from twenty-one healthy volunteers, during a passive odor task of odorants with different valence. We used Dynamic Causal Modeling (DCM) for EEG and Parametric Empirical Bayes (PEB) to investigate the modulatory effects of odors’ valence on the connectivity strengths of the PC-EC-OFC network. Moreover, we controlled for the influence of arousal and gender on such modulatory effects. Our results highlighted the relevant role of the forward and backward PC-EC connections in odor’s brain processing. On the one hand, the EC-to-PC connection was inhibited by both pleasant and unpleasant odors, but not by the neutral one. On the other hand, the PC-to-EC forward connection was found to be modulated (posterior probability (Pp)>0.95) by the arousal level associated with an unpleasant odor. Finally, the whole network dynamics showed several significant gender-related differences (Pp>0.95) suggesting a better ability in odor discrimination for the female gender

    Combining electrodermal activity analysis and dynamic causal modeling to investigate the visual-odor multimodal integration during face perception

    Get PDF
    Objective. This study presents a novel methodological approach for incorporating information related to the peripheral sympathetic response into the investigation of neural dynamics. Particularly, we explore how hedonic contextual olfactory stimuli influence the processing of neutral faces in terms of sympathetic response, event-related potentials and effective connectivity analysis. The objective is to investigate how the emotional valence of odors influences the cortical connectivity underlying face processing and the role of face-induced sympathetic arousal in this visual-olfactory multimodal integration. Approach. To this aim, we combine electrodermal activity (EDA) analysis and dynamic causal modeling to examine changes in cortico-cortical interactions. Results. The results reveal that stimuli arising sympathetic EDA responses are associated with a more negative N170 amplitude, which may be a marker of heightened arousal in response to faces. Hedonic odors, on the other hand, lead to a more negative N1 component and a reduced the vertex positive potential when they are unpleasant or pleasant. Concerning connectivity, unpleasant odors strengthen the forward connection from the inferior temporal gyrus (ITG) to the middle temporal gyrus, which is involved in processing changeable facial features. Conversely, the occurrence of sympathetic responses after a stimulus is correlated with an inhibition of this same connection and an enhancement of the backward connection from ITG to the fusiform face gyrus. Significance. These findings suggest that unpleasant odors may enhance the interpretation of emotional expressions and mental states, while faces capable of eliciting sympathetic arousal prioritize identity processing

    Is Hypnotic Induction Necessary to Experience Hypnosis and Responsible for Changes in Brain Activity?

    No full text
    The relevance of formal hypnotic induction to the experience of trance and its neural correlates is not clear, in that hypnotizability, beliefs and expectation of hypnosis may play a major role. The aim of the study was assessing the EEG brain activity of participants with high (highs) or low hypnotizability scores (lows), aware of their hypnotizability level and informed that the session will include simple relaxation, formal hypnotic induction and neutral hypnosis. A total of 16 highs and 15 lows (according to the Stanford Hypnotic Susceptibility Scale, form A) were enrolled. Their EEGs were recorded during consecutive conditions of open/closed-eyes relaxation, hypnotic induction, neutral hypnosis and post hypnosis not interrupted by interviews. The studied variables were theta, alpha and gamma power spectral density (PSD), and the Determinism (DET) and Entropy (ENT) of the EEG signal Multidimensional Recurrence Plot (mRP). Highs reported significantly greater changes in their state of consciousness than lows across the session. The theta, alpha and gamma PSD did not exhibit condition-related changes in both groups. The Alpha PSD was larger in highs than in lows on midline sites, and the different sides/regions’ theta and gamma PSD were observed in the two groups independently from conditions. ENT showed no correlation with hypnotizability, while DET positively correlated with hypnotizability during hypnosis. In conclusion, the relevance of formal hypnotic induction to the experience of trance may be scarce in highs, as they are aware of their hypnotizability scores and expecting hypnosis. Cognitive processing varies throughout the session depending on the hypnotizability level

    Hessian-based neck tracing of dendritic spines: a preliminary study on confocal images

    No full text
    Alterations in dendritic spines morphology and topology are known to be implied in several neurodegenerative diseases. However, visualizing and reconstructing the exact morphology of spine necks using conventional confocal imaging is still a challenge. In the light of this, we propose the extension of Hessian matrix eigenvalue analysis for the detection of tubular structures to the problem of 3D neck tracing. In this work we stress the relevance of the tracing procedure initialization, for the novel application of this standard approach to the specific scenario. Preliminary results on confocal microscopy images from ex-vivo human samples allowed to obtain almost 80% of necks keeping an average distance of less than one voxel from the reference segmentation and half of them fully overlapping with it. The preliminary results are promising, since they pave the way towards the development of this model-free solution to accurately trace spine neck
    corecore