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Abstract: Thermal cameras capture the infrared radiation emitted from a body in a contactless
manner and can provide an indirect estimation of the autonomic nervous system (ANS) dynamics
through the regulation of the skin temperature. This study investigates the contribution given by
thermal imaging for an effective automatic stress detection with the perspective of a contactless
stress recognition system. To this aim, we recorded both ANS correlates (cardiac, electrodermal,
and respiratory activity) and thermal images from 25 volunteers under acute stress induced by the
Stroop test. We conducted a statistical analysis on the features extracted from each signal, and we
implemented subject-independent classifications based on the support vector machine model with
an embedded recursive feature elimination algorithm. Particularly, we trained three classifiers using
different feature sets: the full set of features, only those derived from the peripheral autonomic
correlates, and only those derived from the thermal images. Classification accuracy and feature
selection results confirmed the relevant contribution provided by the thermal features in the acute
stress detection task. Indeed, a combination of ANS correlates and thermal features achieved 97.37%
of accuracy. Moreover, using only thermal features we could still successfully detect stress with an
accuracy of 86.84% in a contact-free manner.

Keywords: thermal imaging; stress detection; wearable systems; support vector machine; contactless

1. Introduction

Thermal imaging is currently taking hold in psychophysiology for its great advantage
of measuring skin temperature noninvasively, ecologically, and contact free [1]. Many
changes in skin temperature are regulated by the interplay between the parasympathetic
(PNS) and sympathetic (SNS) branches of the autonomic nervous system, i.e., blood redis-
tribution, perspiration, muscle activation, and metabolism. For instance, the activation of
the SNS can alter the vasomotility of subcutaneous vessels (e.g., vasoconstriction) with con-
sequent changes in the skin blood perfusion [2,3], or may control the sweat gland activation
modifying skin perspiration [4]. Accordingly, monitoring skin temperature may provide
information on SNS activity and its dysregulation induced by factors such as chronic or
acute stress.

After a stressful stimulus, the sympathetic activation results in a series of rapid sym-
pathetically driven adaptation changes of ANS activity, whose correlates are reflected by
several peripheral signals. Among these, the breathing rate increases promoting oxygena-
tion, the blood flow is redirected to large muscles through blood vessels dilation, and
the heart rate and blood pressure increase, while digestive functions, urination, and feeling
of hunger are inhibited [5]. Although stress is a physiological phenomenon that is helpful
in many demanding situations, acute stress episodes could affect the human physical
condition and health leading to several symptoms ranging from headache to heart attacks
or arrhythmias [6–8].

Sensors 2022, 22, 976. https://doi.org/10.3390/s22030976 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22030976
https://doi.org/10.3390/s22030976
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6313-5162
https://orcid.org/0000-0002-4822-5562
https://orcid.org/0000-0003-2767-0699
https://orcid.org/0000-0003-2588-4917
https://doi.org/10.3390/s22030976
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22030976?type=check_update&version=1


Sensors 2022, 22, 976 2 of 16

Typically, stress is monitored by means of questionnaires, psychometric tests, and in-
terviews. However, these methods provide subjective measures and can lead to a wrong
assessment of the stress level when the subject is not completely honest or able to answer.
Accordingly, many studies have attempted to infer the psychological state of a subject in a
more reliable and unbiased manner by analyzing ANS peripheral correlates [9]. Among
these, the electrodermal activity (EDA) could provide a reliable metric of stress, and it has
been used as a ground-truth to compare the performance of other signals [10–13]. However,
in view of a more comprehensive ANS assessment, a combination of autonomic measures,
such as respiratory (RESP), cardiac, and EDA signals, is often adopted in the scientific
literature, by using multiple wearable devices [14,15]. However, such an approach may
affect the subject’s natural behaviour both in laboratory settings and in real life scenarios
mainly because of the presence of electrodes and cables. In this study, we contributed to
the shift towards contactless stress monitoring by extending standard approaches to stress
recognition with the aid of infrared thermography.

Thermal imaging unobtrusively monitors skin heat distribution mapping infrared (IR)
radiation onto an image called a thermogram. So far, several physiological parameters
have been extracted from the thermograms, such as breathing rate [16], cardiac pulse [17],
and cutaneous blood perfusion [18]. In addition, information directly derived from the ther-
mal time series has been analyzed in relation to mental states and emotional stimuli [19–23].
For example, the thermal variation of the nose tip has been used to discriminate stimuli
with positive and negative valence [24], as well as in response to startling stimulus [25],
but also to fear or stress [26–29]. Furthermore, thermal features from several facial regions
have been used for statistical comparisons among different psychological states [1,30],
and to classify emotional states [31,32]. In the stress-assessment context, stress elicited
by the Stroop test was observed to induce an enhancement of blood flow in the forehead,
supraorbital and frontal vessels, as indicated by different slopes of the blood volume signal
obtained from the thermograms in baseline and stress condition [29].

We performed a systematic study to quantify the contribution of thermal imaging to a
multisensor wearable system for stress recognition. In particular, we evaluated whether thermal
features can improve the results obtained by a wearable system based on well-established
physiological features extracted from EDA, HRV, and RESP signals in automatically and reliably
recognizing stress. Moreover, we investigated the potential use of the contactless monitoring
system in substitution of the wearable one. We followed a rigorous and robust methodology
with the purpose of increasing the accuracy achieved by previous studies. At the same time, we
included innovative facial regions (i.e., nasal septum, left and right forehead, and left and right
chin) and thermal features (i.e., derivative of the mean temperature and its standard deviation).
We compared the classification performance of a support vector machine with recursive feature
elimination (SVM-RFE) classifier using different sets of physiological and thermal features.
More specifically, we acquired physiological signals, i.e., electrocardiogram (ECG), EDA, and
RESP along with thermal images from 25 healthy subjects performing a computerized/paced
Stroop test. On this dataset, we conducted a preliminary statistical analysis comparing features
extracted from the EDA, HRV, RESP, and thermal signals during resting and stressful conditions,
with the aim of evaluating the effectiveness of our protocol in eliciting acute mental stress. Then,
we evaluated whether thermal features improve stress/non-Stress classification accuracy when
integrated with more standard physiological ones. Finally, we attempted to recognize stressful
conditions by using thermal features alone. All of the details are reported in the next sections,
organized as follows: in Section 2, we describe the protocol and acquisition devices, processing
methods for each signal, feature extraction, statistical analysis, and classification algorithm.
In Section 3 we show the experimental results and in Section 4 discuss our findings.

2. Materials and Methods
2.1. Study Population

A total of 25 healthy subjects (9 females, age = 27 ± 3.1 years) participated in this study.
The experiments were approved by the “Bioethics Committee of the University of Pisa”
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(n. 15/2019), and each volunteer signed the informed consent. Subjects were asked not to
drink coffee the day of the experiment to limit potential confounds due to vasomotor effects
(e.g., increased/decreased vasomotility) [33]. For the same reason, they were also asked to
avoid the consumption of alcohol and tobacco starting on the day before the experiment.

2.2. Experimental Protocol

The experimental timeline is reported in Figure 1. It consisted of three 3 min long
sessions preceded by a 10 min long acclimatization period.

10 0 3 4 7 8
Rest Stroop

0

Acclimatization

PSS

PS PS

Figure 1. Protocol timeline. The dashed line indicates that the subject may take as much time as
he/she needs to complete the task. PS indicates the moment when the subject is asked to report its
perceived stress level.

The first session represented a baseline condition during which subjects were resting
with their eyes open. The second session aimed to induce mental stress by means of the
Stroop test [34]. This latter is a well-known stressor that requires the fast resolution of
two incongruous stimuli causing cognitive interference. More specifically, incongruent
color/semantic-meaning words are presented to a subject who has to answer based on the
color of the word. Here, we developed a computerized paced version of the Stroop test,
in which the name of a color was presented in the middle of the tablet screen every two
seconds, and the subjects had to press the button corresponding to the tint of the word
before a new stimulus appeared. We included a counter, keeping track of the consecutive
success as a motivational stressor. During the task, a ticking sound was being played in the
background to mark the passage of time. Additionally, for each wrong/missing answer the
counter was reset while an acoustic buzzer alerted the subject. Finally, before and after the
Stroop session, subjects were asked to report their level of perceived stress on a Likert scale
from 0 (not at all) to 10 (very stressed). The self-assessed perceived stress level served as a
reference for our analyses.

All the instructions were presented to the subjects on a tablet. Accordingly, interactions
with the experimenter were limited, preventing speech artefacts in the data and standard-
izing the conditions for all subjects. Additionally, each subject filled out the Perceived
Stress Scale (PSS) questionnaire. The PSS is a standard psychological test for measuring
the perception of stress, as the degree to which situations in one’s life are appraised as
stressful [35].

The room temperature and humidity were monitored throughout the experiment by the
EXTECH RH550 Humidity-Temperature Chart Recorder (Extech Instruments, Nashua, New
Hampshire, U.S.) at a rate of 0.5 Hz. In particular, we allowed a maximal temperature variation
within one experimental session of ±1 ◦C and a humidity variation of ±5%. Indeed, a stable
environment was required to ensure reliable relative measures of facial skin temperature.
Moreover, since these variables could trigger body thermoregulatory responses not related to
emotional stress, temperature and humidity were always in a comfortable range of 22 ◦C to
28 ◦C and 40% to 56%, respectively [36]. Finally, the subject was placed in a seated position
at a fixed distance of 1 m from the camera, at maximum distance from the window in order
to avoid direct sunlight, and with no direct ventilation. Taking this into account, we could
ensure reliable relative measures without adding the influence of ambient temperature and
humidity on facial area temperature. In addition, subjects were asked to remove corrective
eyewear during the experiment, as glass is opaque to infrared light.
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2.3. Data Acquisition
2.3.1. Thermal Imaging

We acquired both thermal and RGB images of subjects’ faces. The skin temperature
distribution was unobtrusively acquired through a FLIR T640 thermal camera (Teledyne
FLIR LLC, Wilsonville, Oregon, U.S.), at a rate of 5 Hz. The camera had a resolution of
640 × 480 pixels, 24.6 mm lens, NETD < 0.04 mK @ +30 ◦C and spectral range of 7.8–14 µm
(long-wave infrared—LWIR). Additionally, standard RGB images were acquired at a rate of
30Hz using a Logitech HD Webcam C270 (Logitech International S.A., Lausanne, Switzer-
land), 1280 × 720 pixels, vertically aligned and fixed to the thermal camera.

2.3.2. Physiological Signals

We recorded EDA, ECG, and RESP using a BIOPAC MP 150 system (Biopac Systems,
Inc., Goleta, CA, USA), at a sampling rate of 500 Hz. EDA was recorded placing two
electrodes on the distal phalanx of the index and ring fingers of the non-dominant hand.
ECG was recorded with 3 electrodes positioned below the right and left clavicle, and on
the lower left chest. Finally, RESP was monitored with a piezoelectric chest belt.

2.4. Data Processing
2.4.1. Thermal Processing

We used thermal imaging to monitor the variation in facial temperature distribution
during the experiment and RGB frames to identify anatomical landmarks of interest for
the analysis of IR images. Accordingly, RGB and IR acquisitions were synchronized after
downsampling the RGB video to 5 Hz (i.e., IR imaging sampling rate). Then, RGB and IR
frames were spatially registered with an affine-2D transformation matrix estimated from a
set of manually selected fiducial points in the first frame of the RGB and IR datasets, such
as periauricular points, the corner of the eyes and the mouth. After RGB-IR spatiotemporal
registration, we defined 14 regions of interest (ROIs): i.e., nose tip, forehead (central,
right and left), cheek (right and left), nasal septum, chin (central, right, left), periorbital
(right and left), and maxillary (right and left). A summary of these ROIs along with their
corresponding location is represented in Figure 2.

For each subject, ROIs were automatically found with a two-step procedure. First,
the ROI centres were identified through the intersection of lines connecting specific facial
landmarks detected in the RGB frames with the Yuval–Nirkin algorithm [37]. Then, each
ROI was designed to have a proportional size to the total number of pixels of the face.
Of note, the number of face pixels was automatically segmented by an intensity-landmark-
based algorithm purposely developed for this study. Specifically, we first separated the
face from the neck and the torso using the previously estimated face contour landmarks.
Then, we excluded hair and background by segmenting IR maps with a threshold-based
segmentation on the pixel temperature in range (30 ◦C < Tp < 38 ◦C). Finally, we tracked
the centres of the ROIs throughout the frames with a Matlab PointTracker object based on
Kanade–Lucas–Tomasi feature-tracking algorithm [38], to properly control for potential
undesired subject’s movement. For each frame, we evaluated the median temperature value
of each ROI, obtaining 14 thermal signals per subject. High-frequency noise was filtered
out by a moving median filter and the outliers (temperature values exceeding 3 standard
deviations) were replaced by their nearest value. Then, from each thermal signal, we
computed 4 features: the mean (Mean), the standard deviation (Std), and the mean and the
standard deviation of the signal’s derivative (DMean, Dstd). Of note, the thermal camera
automatic non-uniformity correction (NUC) was performed before the beginning of the
experiment for reliability purposes. Finally, NUC was disabled during the acquisition as
we observed that it corrupted the signals by introducing abrupt thermal changes [30].
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Figure 2. Facial ROIs’ names and corresponding locations.

2.4.2. EDA Processing

The EDA signal reflects changes in the skin conductance induced by sweat glands’
activity, which is controlled by the sympathetic branch of the ANS [4]. Therefore, EDA
signal processing is a powerful tool to quantify the SNS dynamics. More specifically,
the EDA signal can be decomposed into a tonic and a phasic component, which are
characterized by different time scales. The tonic is a slow-varying component whose
spectrum is below 0.05 Hz. Conversely, the phasic reflects short-term and event-related
responses. Here, we used the cvxEDA model to extract tonic and phasic components from
the raw EDA signal. Such a model exploits a rigorous framework integrating Bayesian
statistics, convex optimization, and sparsity, to decompose the EDA signals without the
need of pre- and post-processing steps [39]. Indeed, one of the outputs of the cvxEDA
algorithm is the white Gaussian noise term, which incorporates model prediction errors
as well as measurement errors and artefacts. Afterwards, for each experimental session
we extracted several features related to the SNS activity starting from the tonic and phasic
components: i.e., the mean tonic value (TonicMean) and the standard deviation of the tonic
(TonicStd) averaged within non-overlapped 20 s long time windows; the maximum peak
(PksMax), the mean of the phasic component (PhasicMean), the standard deviation of the
phasic component (PhasicStd), the number of peaks (NPks), the sum of peaks (PksSum)
averaged within non-overlapped 5 s long time windows, and the EDAsymp (power of
the SC spectrum in the range of 0.04 Hz–0.25 Hz) [40], within the entire Rest and Stroop
sessions.

2.4.3. HRV Processing

ECG recordings were analyzed with Kubios HRV [41]. The interbeat (RR) series were
extracted from the ECG using the well-known Pan–Tompkins algorithm [42]. Algorithm-
related artefacts were removed by applying the cubic spline interpolation method. Then,
the obtained RR time series were resampled at 4 Hz to derive the heart rate variability (HRV)
signals [43]. Starting from the HRV time series, several features were derived in the time,
frequency, and nonlinear domain for both the Rest and Stroop session. Specifically, for each
condition, we estimated in 3 min long segments the mean value of HRV signal (mean
HRV), the standard deviation of HRV (std HRV), the square root of the mean squared
differences of successive normal-to-normal (NN) intervals (i.e., RMSSD), the percentage
number of pairs of adjacent NN intervals differing by more than 50 ms (pNN50), the power
expressed as a percentage of total power in the low-frequency (LF, 0.04–0.15 Hz) and high
frequency (HF, 0.15–0.40 Hz) ranges, the ratio of LF to HF power (LF/HF ratio), the minor
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(SD1) and major (SD2) axis of the ellipse that best fits the Poincaré plot of RR intervals,
and the sample entropy (SamplEn).

2.4.4. RESP Processing

The RESP signal was used as a further index of sympathovagal activity. Specifically,
we estimated the mean frequency of respiration (RESP freq) for each condition and used it
as a potential discriminating feature among conditions.

2.5. Exploratory Statistical Analysis

We performed an exploratory statistical analysis to assess at the group level how Rest
and Stroop sessions differed in terms of ANS correlates. Five subjects were excluded from
the analysis on EDA features and one from the thermal analysis due to the presence of
artefacts related to excessive and frequent movement. Accordingly, these 6 subjects were
excluded from the subsequent classification analyses. A non-parametric Wilcoxon sign-rank
test was performed for each EDA, HRV, RESP, and thermal feature between Rest and Stroop
sessions (α = 0.05). We controlled false discovery rate through the Benjamini–Hochberg
(FDR-BH) correction for multiple hypothesis testing [44]. To evaluate the psychometric
changes induced by the Stroop session, the same test was performed on the self-assessed
stress scores recorded before and after the task.

2.6. Classification—Stress and Rest Recognition

We explored the contribution of thermal features in the automatic recognition of Rest
and Stroop sessions. In particular, we compared three SVM models for stress classification.
More specifically, we performed three supervised binary classifications using three different
sets of features: a full feature-set (Full set) composed of features from HRV, EDA, RESP,
and thermal imaging, a set without the thermal features (No-Thermo set) and a set exclusively
made of thermal features (Thermo set).

Given the large number of features in our dataset compared to the number of observa-
tions, it is crucial to reduce the dimensionality of the classification problem by applying
a feature selection strategy (FS). To this aim, we trained an SVM-RFE [45] model that
implements an embedded FS based on recursive feature elimination (RFE) strategy. More
specifically, SVM-RFE is an application of RFE using the weight magnitude as a ranking
criterion and iteratively removing the feature that has the least influence on the SVM
weight-vector magnitude. It is worthwhile to note that highly correlated features can bring
wrong estimations of features importance in feature selection algorithms. In fact, due
to the so-called correlation bias, correlated features can receive underestimated ranking
criteria, with a consequently higher risk to be removed [46]. Accordingly, in our study,
we adopted the SVM-RFE algorithm that implements a correlation bias correction (CBR)
(see [45]). In this way, the ranking criteria is corrected for collinearity by the CBR. Embed-
ded methods as the one implemented here allow not only maximizing the classification
accuracy but also facilitating data understanding thus reducing the risk of overfitting. They
are defined as embedded because the search of the optimal subset is built into the classifier
construction [47]. However, if the FS is embedded into the classifier construction, then
the initial number of features in the input dataset should not be comparable with or even
greater than the number of observations, otherwise, this would affect the correct estimation
of the SVM model weights on which the RFE is based.

For the aforementioned reason, here, we implemented a two-stage feature selection
algorithm [48]: first, we reduced the initial number of features by performing a preliminary
filter-type feature selection based on the correlation between each feature and the dependent
variable (the class label) [49]; secondly, we applied the SVM-RFE model on the pre-filtered
dataset. More specifically, in the first stage, for each feature we computed the correlation
with the corresponding class (labels: 1 = Stroop, 2 = Rest) and selected the features for which
correlation was significant (p value ≤ 0.05).
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The classifiers were implemented in Matlab using the LIBSVM library. We selected
a nonlinear νSVM-RFE with a radial basis function (RBF) kernel, and default parameters
values. As for the out-of-sample testing, we used a leave one subject out (LOSO) cross-
validation to avoid bias in the accuracy level estimation. Specifically, at each iteration, all
data from all subjects were used as a training set except one subject, which was used as a
test set. The choice of the subject to be excluded from the training set at each iteration was
not random. Indeed, all subjects were used as testing set at some point in the iterations.

3. Results

An example of processed thermal signals of a sample subject for each ROI is reported
in Figure 3. In Figure 4, we also report an example of the resulting signals of the cvxEDA
decomposition algorithm for a sample subject.

PSS tests showed that more than 75% of the subjects were inclined to moderately feel stress.
More specifically, 4 subjects out of 25 exhibited low stress, 19 moderate stress, and 2 high stress.
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Figure 3. Thermal signals of one sample subject for each ROI in both rest and stress conditions. The tem-
perature range of the plots was set equal for both conditions in each ROI, to allow visual comparison.
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Figure 4. Application of the cvxEDA algorithm decomposition to the EDA signal of one sample
subject in both rest and stress conditions.
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3.1. Exploratory Statistical Analyses

The Wilcoxon test on the reported level of perceived stress indicated that subjects
were more stressed after the task compared to before (median ± mad = 2 ± 1.12 vs.
median ± mad = 6 ± 1.87, p < 0.001). Concerning the physiological data analysis, most of
the features extracted from autonomic signals confirmed the expected significant difference
between Stroop and Rest sessions. Specifically, except for EDASymp, all EDA features
significantly differed between the two states, as shown in Figure 5. The significant increase
of the EDA features indicates a higher activation of the SNS during the task than during
rest at both tonic and phasic level.

Moreover, all the HRV related features showed a significant variation during Stroop
compared to Rest sessions, with the only exception of stdHRV and SD2 (Figure 6). Specif-
ically, MeanHRV and the LF/HF ratio increased during the Stroop compared to the Rest
session. On the other hand, the remaining features decreased during the Stroop session.
Among these, a variation of interest is the reduction in HF power during the Stroop session,
considering its relation to PNS activity. Conversely, the respiratory frequency increased
significantly during the Stroop compared to theRest session, as shown in Figure 7.

Figure 5. Statistical comparison for each of the EDA features extracted. Significant differences
between Rest and Stroop sessions after the Wilcoxon signed rank test with FDR-BH correction are
highlighted with an asterisk (* = p < 0.05; ** = p < 0.01; *** = p < 0.001).

Figure 6. Statistical comparison for each of the HRV features extracted. Significant differences
between Rest and Stroop sessions after the Wilcoxon signed rank test with FDR-BH correction are
highlighted with an asterisk (* = p < 0.05; ** = p < 0.01; *** = p < 0.001).

The results of the statistical analysis performed on the thermal features are shown in
Figure 8. Among the considered ROIs, L-Forehead, Chin, L-Chin, and R-Chin did not show
any significant alteration between sessions. Conversely, the remaining ROIs, except for N-Sept,
showed a significant increase in the Std during the Stroop session. On the other hand Mean
and DMean of Nose, N-Septum, and R-POrb decreased significantly during the Stroop session.
Similarly, DMean of L-POrb showed a significant decrease during the Stroop session. On the
contrary, Mean of L-Cheek increased significantly during the Stroop compared to the Rest
session. Finally, DStd did not show any significant variation between the tasks.
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Figure 7. Statistical comparison for the respiratory feature extracted. Significant differences between
Rest and Stroop sessions after the Wilcoxon signed rank test with FDR-BH correction are highlighted
with an asterisk (* = p < 0.05; ** = p < 0.01; *** = p < 0.001).
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Figure 8. Statistical comparison for each of the thermal features extracted. Significant differences
between Rest and Stroop sessions after the Wilcoxon signed rank test with FDR-BH correction are
highlighted with an asterisk (* = p < 0.05; ** = p < 0.01; *** = p < 0.001).

3.2. Classification

After the preliminary filter-type feature selection, Full Set dimensionality was reduced
to 20, Thermo Set to 9, and No-Thermo Set to 11, as reported in Table 1. On these three different
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sets, we compared the outcomes of the SVM-RFE classifier. Specifically, for each set, we
evaluated the classification accuracy by means of LOSO cross-validation. The average
accuracy at each cycle is reported in Figure 9. In particular, we observed a maximum
accuracy of 97.37% for the Full set and 94.74% for the No-Thermo set, whereas for the
Thermo set we observed a maximum accuracy of 86.84%. In particular, the peak of the
accuracy trend for the Full Set was obtained with two thermal features and one EDA feature.
The accuracy peak in the Thermo Set was obtained when the first five most relevant features,
according to the RFE criterion, were considered. In the NoThermo Set, the maximum the
accuracy was reached when four features were considered (three EDA features and the
respiratory frequency).

In Table 1, for each set, we report the results of the filter-type feature selection proce-
dure, along with the feature ranking according to RFE. We observed that within the Full set,
nine out of twenty features were thermal ones and two of them (i.e., RPOrb DMean, N-Sept
DMean) ranked among the first three features. In the No-Thermo set, all EDA features except
EDAsymp were selected, together with RESP freq, mean HRV, and std HRV. Notably,
the TonicMean was ranked as first in both Full set an No-Thermo set. In the Thermo set,
RCheek Std was the first ranked feature, with an accuracy higher then 80%. The same
accuracy was reached in the other two feature sets when considering only TonicMean from
the EDA signal. Finally, in the Thermo set, several ROIs were selected (Table 1). In particular,
only features based on signal derivative mean (i.e., DMean) and signal standard deviation
(i.e., Std) were included.

Table 1. Feature ranking according to the RFE criterion.

Rank Full Set Rank Thermo Set Rank No-Thermo Set

1 TonicMean 1 RCheek Std 1 TonicMean

2 RPOrb Dmean 2 RPOrb Dmean 2 PhasicMean

3 N-Sept Dmean 3 Nose DMean 3 RESP freq

4 PhasicMean 4 LCheek Std 4 PksSum

5 PksSum 5 N-Sept DMean 5 TonicStd

6 PhasicStd 6 RPOrb Std 6 NPks

7 TonicStd 7 LPOrb DMean 7 PhasicStd

8 Npks 8 RForehead Std 8 SampEn

9 RESP freq 9 Forehead Std 9 PksMax

10 PksMax 10 std HRV

11 RCheek Std 11 mean HRV

12 Nose DMean

13 SampEn

14 std HRV

15 RPOrb Std

16 LPOrb DMean

17 RForehead Std

18 LCheek Std

19 mean HRV

20 Forehead Std

For each feature set, we report the confusion matrices related to the subset that
achieved the maximum accuracy (Table 2). For the Thermo set, we observed a percentage of
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false negatives (error type II) of 15.79%, lower values were found in the Full set and in the
No-Thermo set.

Table 2. Confusion matrices. N-S: non-stress; S: stress. The percentage of true positives and true
negatives of each class is represented in the diagonal of each table.

Predicted Classes
S N-S S N-S S N-S

S 94.74% 5.26% 84.21% 15.79% 100% 0%
Actual Classes

N-S 0% 100% 10.53% 89.47% 10.53% 89.47%
Full Set Thermo Set No-Thermo Set
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Figure 9. Accuracy trend of stress/non-stress recognition problem as a function of the selected
features. The features are ranked according to the SVM-RFE criterion. Maximum accuracy is
highlighted by red asterisks.

4. Discussion

In this study, we explored the possibility of using the thermal camera for automatic
acute stress detection either in combination with other typical physiological signals or
alone. In this latter condition, we made a relevant step towards a reliable contactless
subject-independent stress recognition system exclusively based on thermal features. This
might contribute to overcoming issues given by multiple wearable devices and support the
shift towards contactless stress monitoring.

We designed a computerized and paced version of the Stroop test to mimic a more
realistic stressful situation [50,51]. This allowed to reduce the interaction of the subjects
with the experimenter, to standardize the external stimuli for all the participants, and to
prevent speech artefacts in the signals. On the other hand, the use of well-established
measures for stress recognition allowed us to confirm the effectiveness of the stimulation
protocol. Here, we observed a significant increase in self-assessed perceived stress levels
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after the Stroop session, as expected. Furthermore, the group-level preliminary statistical
analyses on physiological signals supported this observation, as significant variations of
most of the physiological parameters taken into consideration were observed. Among the
HRV related features, we observed a decrease in RMSSD, pNN50, and HF which are likely
to reflect a decrease in the PNS activity [52,53]. Moreover, we observed an increase of the
LF/HF ratio which was previously associated with psychological stress due to changes
in the sympathovagal balance [54]. To study the effect on the SNS activity, we based on
the analysis of the EDA. Indeed, many of these features were found to be particularly
suitable for stress monitoring [10,55]. In our study, we observed an increase in the mean
value of the tonic component (TonicMean) during the Stroop session, which is likely to
reflect the overall increase of the subject’s arousal level. Furthermore, the increase of phasic
component features indicated a more frequent and stimulus-related SNS activation, which
may be related to the repetitive task-induced request for attention. Finally, we observed
a higher respiratory frequency during the Stroop session, possibly reflecting sustained
attention and mental stress [56].

The preliminary statistical analysis performed on thermal features allowed us to
distinguish among rest and stress conditions as well, with the main advantage of providing
the measures of interest in a contactless fashion. Stressful conditions were found to trigger
a sympathetically driven vasoconstriction of the blood vessels in the skin [19,20,27,57],
which is reflected by a drop in the temperature of the tip of the nose [22,24,58]. In our
study, we observed such temperature drop as well. Additionally, our results extend such
significant variations also to other facial regions, i.e., forehead, cheeks, chin, periorbital,
and maxillary areas. In particular, we found an increase in the mean temperature of the
forehead during Stroop, in agreement with [29], and which may be associated with the
activation of the corrugator muscle in response to stress [19]. Moreover, we observed a
significant temperature increase in the left cheek, which could be due to the well-known
blushing phenomenon due to embarrassment [59] and possibly associated with social
stress. It is worthwhile noting that some of these ROIs did not show a coherent thermal
pattern throughout the literature [60]. In this view, although further investigation will be
needed, we can confirm that several of these ROIs were informative for stress/non-stress
recognition by means of the SVM-RFE algorithm used in this work.

We evaluated the contribution of thermal features in a stress recognition task by
comparing the performance of a classifier trained with and without thermal features (i.e.,
Full set vs. No-Thermo set). Furthermore, we evaluated the ability of the thermal features
alone to recognize stress (i.e., Thermo set).

We built a classification of stress at the single-subject level [61], avoiding possible bias
introduced by other validation strategies such as the K-fold ones (when data from the
same subject is presented both in the training and validation sets). Our results showed a
significant contribution given by the features derived by the thermal signal which increased
the accuracy from 94.74% to 97.37% (Full Set). Moreover, the peak of accuracy was obtained
with only three features, two of which extracted by the thermal signal (i.e., DMean of
RPOrb and N-Sept).

Notably, the classification exclusively based on thermal features achieved a maximum
accuracy of 86.84%. Although this value was lower than the one obtained with wearable
devices, our result suggests that stress recognition by means of contactless thermal imaging
can still achieve good results. In this view, it is worthwhile noting that stress recognition
based only on thermal imaging would have the advantages of being more comfortable with
respect to intrusive contact-based systems.

To minimize the risk of overfitting due to the limited number of observations, we
decreased the complexity of the model, maximizing the classification accuracy. In particular,
we implemented a two-stage feature selection (FS) strategy to reduce the dimensionality
of the classification problem. First, we reduced the number of features by performing
a preliminary filter-type feature selection based on the correlation between each feature
and the dependent variable (i.e., the class label) [49]. Moreover, we applied the SVM-
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RFE+CBR algorithm on the reduced dataset [45]. This is an embedded FS that not only
reduces the risk of overfitting, but also implements a correlation bias reduction strategy.
Moreover, it has been proved that embedded FS methods outperform the filter and wrapper
approach, scoring features’ importance based on the output of the predictive model [62–64].
Finally, we evaluated generalization capabilities through leave-one-subject-out (LOSO)
cross-validation strategy which made our results unbiased and subject independent.

The feature selection step allowed to highlight the most important features for optimal
classification. Many thermal features were selected for the classification when using the
Full Set. Notably, 9 features out of 20 were thermal ones. It is worthwhile noting that
among the thermal features only the standard deviation Std and the mean of the derivative
DMean were selected (both of them being measures of thermal variation). Specifically,
Std is a measure of the amount of variation in temperature, while DMean is an index
of the velocity of temperature variations. This result, in line with other studies [65],
suggests that absolute temperature is of less interest compared to its relative changes.
Other previous studies have tested the performance of combined or singleton wearable
and contactless systems [66–68], with lower accuracy [67] or showing some limitations in
the methodological approach [66,68]. Whereas the authors in [68] based the classification
on respiratory features extracted from the thermograms, regardless of strictly-thermal
signatures, another study [66] employed a decision tree classifier with LOSO validation
to investigate whether feature fusion of the physiological and thermal modalities could
further improve the acute stress detection rate. Despite their good accuracy, our processing
and classification pipeline was able to outperform the decision tree classifier.

A potential limitation of psychophysiological studies involving thermal imaging is
related to the confounding factors due to the surrounding environment. Infrared technology
is highly sensitive to reflected radiation from nearby objects. In this work, acquisitions
were performed in a controlled environment (e.g., no direct ventilation on the subjects
and reasonable distance from the window). Furthermore, we prevented the subject’s
thermoregulation processes by controlling for room temperature and humidity to be steady
and at a comfortable level [69]. Indeed, these processes could hide the small thermal
variation due to the psychological factors under consideration. In addition, we have
ensured an acclimatization period prior to the experiment of 10 min, as suggested in [70],
to allow for skin temperature patterns stabilization [36,71]. Accordingly, we can assume
that the observed physiological changes are due to the SNS/PNS balance in response to
emotional stress rather than to other phenomena. Finally, another limitation is given by
the movement constraints that are needed to ensure low ROI tracking errors and therefore
low noise in the thermal signals. Some studies use a chin rest to avoid sudden head
rotation or direction change [72]. Here, we asked the subject to remain still during the
acquisitions. Afterwards, we visually inspected the signals and removed subjects with
irreducible artefacts. However, further studies will try to investigate a method able to
mitigate these limitations.

It is worthwhile to mention that different kinds of stimuli may induce stress (e.g.,
emotional, physical). In this work, we used only one type of mental stressor, obtained by
means of the well-known Stroop test. However, future studies will consider more complex
protocols (e.g., by including different stressors) to extend the results to different kinds of
stress. Other insights could include thermal feature extraction also in the frequency or
non-linear domains, possibly improving the performances of the classifier. Finally, in the
perspective of extending these results to clinical uses, the developed system could be tested
also with pathological subjects.
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