117 research outputs found

    Observations of the X-ray Nova GRO~J0422+32: II: Optical Spectra Approaching Quiescence

    Full text link
    We present results obtained from a series of 5~\AA\ resolution spectra of the X-ray Nova GRO~J0422+32 obtained in 1993~October, when the system was approximately 2 magnitudes above quiescence, with R19{\rm R \sim 19}. The data were obtained in an effort to measure the orbital radial velocity curve of the secondary, but detection of the narrow photospheric absorption lines needed to do this proved elusive. Instead we found wide absorption bands reminiscent of M~star photospheric features. The parameters determined by fitting accretion disk line profiles (Smak profiles) to the Hα\alpha line are similar to those found in several strong black-hole candidates. Measurements of the velocity of the Hα\alpha line are consistent with an orbital period of 5.1~hours and a velocity semi-amplitude of the primary of 34±634 \pm 6~\kms. These measurements, when combined with measurements of the velocity semi-amplitude of the secondary made by others, indicate that the mass ratio q0.09q \sim 0.09. If the secondary follows the empirical mass-radius relation found for CVs, the low qq implies a primary mass of Mx5.6M_x \sim 5.6\mo, and a rather low (face-on) inclination. The Hα\alpha EW is found to be modulated on the orbital period with a phasing that implies a partial eclipse of the disk by the secondary, but simultaneous R~band photometry shows no evidence for such an eclipse.Comment: Accepted for ApJ, plain latex, 5 figures available as self-extracting uuendoced, compressed, tarfiles (from uufiles

    The mass of the neutron star in the binary millisecond pulsar PSR J1012+5307

    Get PDF
    We have measured the radial velocity variation of the white dwarf secondary in the binary system containing the millisecond pulsar PSR J1012 + 5307. Combined with the orbital parameters of the radio pulsar, we infer a mass ratio q (=M-1/M-2) = 10.5 +/- 0.5 OUT optical spectroscopy has also allowed us to determine the mass of the white dwarf companion by fitting the spectrum to a grid of DA model atmospheres: we estimate M-2 = 0.16 +/- 0.02 M., and hence the mass of the neutron star is 1.64 +/- 0.22 M., where the error is dominated by that of M-2. The orbital inclination is 52 +/- 4 deg. For an initial neutron star mass of similar to 1.4 M., only a few tenths of a solar mass at most has been successfully accreted over the lifetime of the progenitor low-mass X-ray binary. If the initial mass of the secondary was similar to 1 M., our result suggests that the mass transfer may have been non-conservative

    The sky lancer: 417th Bomb Group

    Get PDF
    The Sky Lancers have established an enviable record in combat against the Japanese in the Southwest Pacific Theatre of Operations. We have advanced twenty-five hundred miles since debarking at Cape Sudest, New Guinea; we have delivered destruction to the enemy over every mile of it and part of our great task still lies ahead on the road to Tokyo. Our gains have not been made easily and the price has been paid in both men and equipment. It is to our gallant comrades who made their last flight with our organization that The SKY LANCER is dedicated, for it was they who contributed so greatly to our success and to the ultimate peace we are to gain through their courageous efforts. Milton W. Johnson, Lt. Col., Air Corps, Commandinghttps://digicom.bpl.lib.me.us/ww_reg_his/1078/thumbnail.jp

    Keck Infrared Observations of GRO J0422+32 in Quiescence

    Get PDF
    We present Keck K-band photometry and low-resolution H & K-band spectroscopy of the X-ray nova GRO J0422+32 obtained while the system was in the quiescent state. No clear ellipsoidal modulation is present in the light curve, which is instead dominated by a strong flickering component. In the K-band we observe strong Br_gamma emission, with an equivalent width of 38 +/- 5 Angstroms. From this we conclude that the accretion disc is the most likely source of the observed photometric contamination, and that previous infrared-based attempts to constrain the mass of the putative black hole in this system are prone to considerable uncertainty. We finally proceed to show how it is possible to place meaningful constraints on some of the binary parameters of this system, even in the presence of a relatively high level of contamination from the disc.Comment: 7 pages, 6 figures & 1 table. Accepted for publication in MNRA

    Detection of hard X-ray pulsations and a strong iron K_beta emission line during an extended low state of GX 1+4

    Full text link
    We present here results obtained from a detailed timing and spectral analysis of three BeppoSAX observations of the binary X-ray pulsar GX 1+4 carried out in August 1996, March 1997, and August 2000. In the middle of the August 2000 observation, the source was in a rare low intensity state that lasted for about 30 hours. Though the source does not show pulsations in the soft X-ray band (1.0-5.5 keV) during the extended low state, pulsations are detected in 5.5-10.0 keV energy band of the MECS detector and in hard X-ray energy bands (15-150 keV) of the PDS instrument. Comparing the 2-10 keV flux during this low state with the previously reported low states in GX 1+4, we suggest that the propeller regime in GX 1+4 occurs at a lower mass accretion rate than reported earlier. Broad-band (1.0-150 keV) pulse averaged spectroscopy reveals that the best-fit model comprises of a Comptonized continuum along with an iron K_alpha emission line. A strong iron K_beta emission line is detected for the first time in GX 1+4 during the extended low state of 2000 observation with equivalent width of ~550 eV. The optical depth and temperature of the Comptonizing plasma are found to be identical during the high and low intensity states whereas the hydrogen column density and the temperature of the seed photons are higher during the low state. We also present results from pulse phase resolved spectroscopy during the high and low flux episodes.Comment: Accepted for publication in The Astrophysical Journa

    RNA phage biology in a metagenomic era

    Get PDF
    The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the “viral dark matter”). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies

    Long-term photometric variations in the candidate white-dwarf pulsar AR Scorpii from K2 , CRTS, and ASAS-SN observations

    Get PDF
    We analyze long-cadence Kepler K2 observations of AR Sco from 2014, along with survey photometry obtained between 2005 and 2016 by the Catalina Real-Time Sky Survey and the All-Sky Automated Survey for Supernovae. The K2 data show the orbital modulation to have been fairly stable during the 78 days of observations, but we detect aperiodic deviations from the average waveform with an amplitude of ~2% on a timescale of a few days. A comparison of the K2 data with the survey photometry reveals that the orbital waveform gradually changed between 2005 and 2010, with the orbital maximum shifting to earlier phases. We compare these photometric variations with proposed models of this unusual system

    A Dynamical Study of the Black Hole X-ray Binary Nova Muscae 1991

    Full text link
    We present a dynamical study of the Galactic black hole binary system Nova Muscae 1991 (GS/GRS 1124-683). We utilize 72 high resolution Magellan Echellette (MagE) spectra and 72 strictly simultaneous V-band photometric observations; the simultaneity is a unique and crucial feature of this dynamical study. The data were taken on two consecutive nights and cover the full 10.4-hour orbital cycle. The radial velocities of the secondary star are determined by cross-correlating the object spectra with the best-match template spectrum obtained using the same instrument configuration. Based on our independent analysis of five orders of the echellette spectrum, the semi-amplitude of the radial velocity of the secondary is measured to be K_2 = 406.8+/-2.7 km/s, which is consistent with previous work, while the uncertainty is reduced by a factor of 3. The corresponding mass function is f(M) = 3.02+/-0.06 M_\odot. We have also obtained an accurate measurement of the rotational broadening of the stellar absorption lines (v sin i = 85.0+/-2.6 km/s) and hence the mass ratio of the system q = 0.079+/-0.007. Finally, we have measured the spectrum of the non-stellar component of emission that veils the spectrum of the secondary. In a future paper, we will use our veiling-corrected spectrum of the secondary and accurate values of K_2 and q to model multi-color light curves and determine the systemic inclination and the mass of the black hole.Comment: ApJ accepted version; minor revision; added a subsection about systematic uncertaintie

    Tomography of X-ray Nova Muscae 1991: Evidence for ongoing mass transfer and stream-disc overflow

    Full text link
    We present a spectroscopic analysis of the black hole binary Nova Muscae 1991 in quiescence using data obtained in 2009 with MagE on the Magellan Clay telescope and in 2010 with IMACS on the Magellan Baade telescope at the Las Campanas Observatory. Emission from the disc is observed in H alpha, H beta and Ca II (8662 A). A prominent hotspot is observed in the Doppler maps of all three emission lines. The existence of this spot establishes ongoing mass transfer from the donor star in 2009-2010 and, given its absence in the 1993-1995 observations, demonstrates the presence of a variable hotspot in the system. We find the radial distance to the hotspot from the black hole to be consistent with the circularization radius. Our tomograms are suggestive of stream-disc overflow in the system. We also detect possible Ca II (8662 A) absorption from the donor star.Comment: 10 pages, 11 figures, 1 table. Accepted for publication in MNRA
    corecore