102 research outputs found

    Microtubule Organization during the Early Development of the Parthenogenetic Egg of the HymenopteranMuscidifurax uniraptor

    Get PDF
    AbstractThe origin of the zygotic centrosome is an important step in developmental biology. It is generally thought that sperm at fertilization plays a central role in forming the functional centrosome which subsequently organizes the first mitotic spindle. However, this view is not applicable in the case of parthenogenetic eggs which develop without the sperm contribution. To clarify the problem of the origin of the zygotic centrosome during parthenogenetic development, we studied a hymenopteran,Muscidifurax uniraptor.Antitubulin antibody revealed that after activation several asters assembled in the egg cytoplasm. The number of asters varied in relation to the cell cycle. They became visible from anaphase of the first meiotic division and increased in number as meiosis progressed, reaching a maximum at the first mitosis. From anaphase–telophase of the first mitosis they decreased in number and were no longer found during the third mitotic division. To elucidate the nature of these asters we performed an ultrastructural study with transmission electron microscopy and immunofluorescence with antibodies against anti-γ-tubulin and CP190. In this way we showed the presence in these asters of centrosomal components and centrioles. Our observations suggest that the cytoplasm ofMuscidifuraxeggs contains a pool of inactive centrosomal precursor proteins becoming able to nucleate microtubules into well-defined asters containing centrioles after activation

    A requirement for the Abnormal Spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila

    Get PDF
    Drosophila abnormal spindle (asp) mutants exhibit a mitotic metaphase checkpoint arrest with abnormal spindle poles, which reflects a requirement for Asp for the integrity of microtubule organising centres (MTOCs). In male meiosis, the absence of a strong spindle integrity checkpoint enables asp mutant cells to proceed through anaphase and telophase. However, the central spindle region is not correctly organised and cells frequently fail to complete cytokinesis. This contrasts with meiosis in wild-type males where at late anaphase a dense array of microtubules forms in the central spindle region that has Asp localised at its border. We speculate that Asp is associated with the minus ends of microtubules that have been released from the spindle poles to form the central spindle. A parallel situation arises in female meiosis where Asp not only associates with the minus ends of microtubules at the acentriolar poles but also with the central spindle pole body that forms between the two tandem spindles of meiosis II. Upon fertilisation, Asp is also recruited to the MTOC that nucleates the sperm aster. Asp is required for growth of the microtubules of the sperm aster, which in asp mutants remains diminutive and so prevents migration of the pronuclei

    A requirement for the Abnormal Spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila

    Get PDF
    Drosophila abnormal spindle (asp) mutants exhibit a mitotic metaphase checkpoint arrest with abnormal spindle poles, which reflects a requirement for Asp for the integrity of microtubule organising centres (MTOCs). In male meiosis, the absence of a strong spindle integrity checkpoint enables asp mutant cells to proceed through anaphase and telophase. However, the central spindle region is not correctly organised and cells frequently fail to complete cytokinesis. This contrasts with meiosis in wild-type males where at late anaphase a dense array of microtubules forms in the central spindle region that has Asp localised at its border. We speculate that Asp is associated with the minus ends of microtubules that have been released from the spindle poles to form the central spindle. A parallel situation arises in female meiosis where Asp not only associates with the minus ends of microtubules at the acentriolar poles but also with the central spindle pole body that forms between the two tandem spindles of meiosis II. Upon fertilisation, Asp is also recruited to the MTOC that nucleates the sperm aster. Asp is required for growth of the microtubules of the sperm aster, which in asp mutants remains diminutive and so prevents migration of the pronuclei

    Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I

    Get PDF
    Drosophila Klp67A belongs to the Kip3 subfamily of Kinesin-type microtubule catastrophe factors. In primary spermatocytes, loss of klp67A leads to defects in karyokinesis and cytokinesis. We show that these cells formed disorganised, bipolar spindles that contained increased numbers of microtubules. The kinetochore fibres were wavy and bent, whereas astral microtubules appeared abnormally robust and formed cortical bundles. Time-lapse studies revealed that during biorientation, the chromosomes in klp67A mutant cells continued to reorient for about twice as long as those in control cells. Metaphase plates were poorly defined in the mutants and often formed at non-equatorial positions. Consistent with the above abnormalities in chromosome congression, we found that in wild-type cells Klp67A associated with prometaphase/metaphase kinetochores before redistributing to the central spindle at anaphase onset. Although the timing of this redistribution of kinetochores argues against a role in anaphase chromosome segregation, dyads in the mutants disjoined but exhibited greatly diminished poleward velocities. They travelled on average at approximately 34% of the velocity of their wild-type counterparts and often decondensed at non-polar locations. Hypomorphic mutations of klp67A may lead to segregation defects

    Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis.

    Get PDF
    Cytokinesis culminates in the final separation, or abscission, of the two daughter cells at the end of cell division. Abscission relies on an organelle, the midbody, which forms at the intercellular bridge and is composed of various proteins arranged in a precise stereotypic pattern. The molecular mechanisms controlling midbody organization and function, however, are obscure. Here we show that proper midbody architecture requires cross-regulation between two cell division kinases, Citron kinase (CIT-K) and Aurora B, the kinase component of the chromosomal passenger complex (CPC). CIT-K interacts directly with three CPC components and is required for proper midbody architecture and the orderly arrangement of midbody proteins, including the CPC. In addition, we show that CIT-K promotes Aurora B activity through phosphorylation of the INCENP CPC subunit at the TSS motif. In turn, Aurora B controls CIT-K localization and association with its central spindle partners through phosphorylation of CIT-K's coiled coil domain. Our results identify, for the first time, a cross-regulatory mechanism between two kinases during cytokinesis, which is crucial for establishing the stereotyped organization of midbody proteins.C.M. holds a Cambridge Cancer Centre PhD studentship, which is supported by Cancer Research UK and the MRC. Z.I.B. was supported by a Gwynaeth Pretty PhD studentship and the BlueGnome Molecular Genetics Fund from the Department of Pathology, University of Cambridge, and was also a recipient of a short-term EMBO fellowship and a fellowship from the Cambridge Philosophical Society. G.C. and M.G. are supported by a grant ‘Progetto di Ricerca di Interesse Nazionale’ (PRIN 2012) from the Ministero dell'Istruzione, Università e Ricerca. P.P.D. is the recipient of the Maplethorpe Fellowship from Murray Edwards College, Cambridge, UK.This is the final version of the article. It first appeared from Royal Society Publishing via https://doi.org/10.1098/rsob.16001

    Drosophila Polo Kinase Is Required for Cytokinesis

    Get PDF
    A number of lines of evidence point to a predominance of cytokinesis defects in spermatogenesis in hypomorphic alleles of the Drosophila polo gene. In the pre-meiotic mitoses, cytokinesis defects result in cysts of primary spermatocytes with reduced numbers of cells that can contain multiple centrosomes. These are connected by a correspondingly reduced number of ring canals, structures formed by the stabilization of the cleavage furrow. The earliest defects during the meiotic divisions are a failure to form the correct mid-zone and mid-body structures at telophase. This is accompanied by a failure to correctly localize the Pavarotti kinesin- like protein that functions in cytokinesis, and of the septin Peanut and of actin to be incorporated into a contractile ring. In spite of these defects, cyclin B is degraded and the cells exit M phase. The resulting spermatids are frequently binuclear or tetranuclear, in which case they develop either two or four axonemes, respectively. A significant proportion of spermatids in which cytokinesis has failed may also show the segregation defects previously ascribed to polo1 mutants. We discuss these findings in respect to conserved functions for the Polo-like kinases in regulating progression through M phase, including the earliest events of cytokinesis

    DSAS-6 Organizes a Tube-like Centriole Precursor, and Its Absence Suggests Modularity in Centriole Assembly

    Get PDF
    Centrioles are microtubule-based cylindrical structures that exhibit 9-fold symmetry and facilitate the organization of centrosomes, flagella, and cilia [1]. Abnormalities in centrosome structure and number occur in many cancers 1, 2. Despite its importance, very little is known about centriole biogenesis. Recent studies in C. elegans have highlighted a group of molecules necessary for centriole assembly 1, 3. ZYG-1 kinase recruits a complex of two coiled-coil proteins, SAS-6 and SAS-5, which are necessary to form the C. elegans centriolar tube, a scaffold in centriole formation 4, 5. This complex also recruits SAS-4, which is required for the assembly of the centriolar microtubules that decorate that tube 4, 5. Here we show that Drosophila SAS-6 is involved in centriole assembly and cohesion. Overexpression of DSAS-6 in syncitial embryos led to the de novo formation of multiple microtubule-organizing centers (MTOCs). Strikingly, the center of these MTOCs did not contain centrioles, as described previously for SAK/PLK4 overexpression [6]. Instead, tube-like structures were present, supporting the idea that centriolar assembly starts with the formation of a tube-like scaffold, dependent on DSAS-6 [5]. In DSAS-6 loss-of-function mutants, centrioles failed to close and to elongate the structure along all axes of the 9-fold symmetry, suggesting modularity in centriole assembly. We propose that the tube is built from nine subunits fitting together laterally and longitudinally in a modular and sequential fashion, like pieces of a layered “hollow” cake

    Viruslike particles and rickettsia-like organisms in male germ and cyst-cells of Bemisia tabaci (Homoptera, Aleyrodidae)

    Get PDF
    Espermatozoides de insetos têm atraído a atenção intensiva dos citologistas, especialmente aqueles que tentam relacionar a grande diversidade de sua estrutura e do processo evolutivo. Este estudo mostra a diferenciação de células germinativas masculinas e estrutura em moscas-brancas

    Spindle Formation in the Mouse Embryo Requires Plk4 in the Absence of Centrioles

    Get PDF
    During the first five rounds of cell division in the mouse embryo, spindles assemble in the absence of centrioles. Spindle formation initiates around chromosomes, but the microtubule nucleating process remains unclear. Here we demonstrate that Plk4, a protein kinase known as a master regulator of centriole formation, is also essential for spindle assembly in the absence of centrioles. Depletion of maternal Plk4 prevents nucleation and growth of microtubules and results in monopolar spindle formation. This leads to cytokinesis failure and, consequently, developmental arrest. We show that Plk4 function depends on its kinase activity and its partner protein, Cep152. Moreover, tethering Cep152 to cellular membranes sequesters Plk4 and is sufficient to trigger spindle assembly from ectopic membranous sites. Thus, the Plk4-Cep152 complex has an unexpected role in promoting microtubule nucleation in the vicinity of chromosomes to mediate bipolar spindle formation in the absence of centrioles
    corecore