37 research outputs found

    Midkines, in the Neural Stem Cell Niche, during Developmental and Regenerative Neurogenesis and Their Regulation by the Circadian Clock in the Retina of Zebrafish.

    Full text link
    In the retina of adult teleosts, stem cells are sustained in two specialized niches: the ciliary marginal zone (CMZ) and the microenvironment surrounding adult Müller glia. Recently, Müller glia were identified as retinal stem cells responsible for neuronal regeneration. In a screen to discover secreted molecules that regulate neuronal regeneration in the retina, we identified midkine-b (mdkb). Midkine is a highly conserved pleiotropic, heparin-binding growth-factor. The zebrafish genome encodes two midkine genes: midkine-a (mdka) and mdkb. Expression and function of Midkines in the vertebrate retina are largely unknown. My research shows that zebrafish mdka and mdkb are expressed in distinct patterns in developing, mature and regenerating retina, suggesting different functions for the two molecules. In the developing zebrafish retina, mdka is expressed in the CMZ and mdkb in newly postmitotic cells, suggesting these molecules may sequentially regulate aspects of retinal neurogenesis. In the juvenile/adult retina, mdka is expressed in presumptive Müller glia at the retinal margin, cells at the origin of the rod photoreceptor lineage, and in horizontal cells. Following selective death of photoreceptors in the adult retina, mdka and mdkb are co-expressed in horizontal cells, proliferating Müller glia and their neurogenic progeny. The retina entrains the circadian clock to changes in the light/dark cycle and is characterized by numerous biological processes that follow a circadian rhythm. Expression of Mdka in horizontal cells is regulated by the circadian clock, with increased expression during subjective day. Expression of mdkb is weakly modulated by the circadian clock, increasing during subjective night in horizontal cells. The two midkin es show therefore asynchronous circadian regulation, suggesting different biological activities at distinct circadian times. Expression of mdkb in horizontal cells during the subjective night, similar to the regenerating retina, suggests a role in persistent neurogenesis. In conclusion, Mdka and Mdkb are molecular components in the retinal stem cell compartments during developmental, regenerative and growth-associated neurogenesis suggesting they function as autocrine/paracrine signaling molecules and sequentially regulate different aspects of neurogenesis in the zebrafish retina. These data establish the foundation for future studies to investigate functional roles of these molecules in retinal neurogenesis.Ph.D.NeuroscienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61798/1/asieh_1.pd

    Digital Twins:State of the Art Theory and Practice, Challenges, and Open Research Questions

    Get PDF
    Digital Twin was introduced over a decade ago, as an innovative all-encompassing tool, with perceived benefits including real-time monitoring, simulation and forecasting. However, the theoretical framework and practical implementations of digital twins (DT) are still far from this vision. Although successful implementations exist, sufficient implementation details are not publicly available, therefore it is difficult to assess their effectiveness, draw comparisons and jointly advance the DT methodology. This work explores the various DT features and current approaches, the shortcomings and reasons behind the delay in the implementation and adoption of digital twin. Advancements in machine learning, internet of things and big data have contributed hugely to the improvements in DT with regards to its real-time monitoring and forecasting properties. Despite this progress and individual company-based efforts, certain research gaps exist in the field, which have caused delay in the widespread adoption of this concept. We reviewed relevant works and identified that the major reasons for this delay are the lack of a universal reference framework, domain dependence, security concerns of shared data, reliance of digital twin on other technologies, and lack of quantitative metrics. We define the necessary components of a digital twin required for a universal reference framework, which also validate its uniqueness as a concept compared to similar concepts like simulation, autonomous systems, etc. This work further assesses the digital twin applications in different domains and the current state of machine learning and big data in it. It thus answers and identifies novel research questions, both of which will help to better understand and advance the theory and practice of digital twins

    Supply Chain Digital Twin Framework Design:An Approach of Supply Chain Operations Reference Model and System of Systems

    Get PDF
    Digital twin technology has been regarded as a beneficial approach in supply chain development. Different from traditional digital twin (temporal dynamic), supply chain digital twin is a spatio-temporal dynamic system. This paper explains what is 'twined' in supply chain digital twin and how to 'twin' them to handle the spatio-temporal dynamic issue. A supply chain digital twin framework is developed based on the theories of system of systems and supply chain operations reference model. This framework is universal and can be applied in various types of supply chain systems. We firstly decompose the supply chain system into unified standard blocks preparing for the adoption of digital twin. Next, the idea of supply chain operations reference model is adopted to digitise basic supply chain activities within each block and explain how to use existing information system. Then, individual sub-digital twin is established for each member in supply chain system. After that, we apply the concept of system of systems to integrate and coordinate sub-digital twin into supply chain digital twin from the views of supply chain business integration and information system integration. At last, one simple supply chain system is applied to illustrate the application of the proposed model

    Multiple mechanisms of growth hormone-regulated gene transcription

    Get PDF
    Diverse physiological actions of growth hormone (GH) are mediated by changes in gene transcription. Transcription can be regulated at several levels, including post-translational modification of transcription factors, and formation of multiprotein complexes involving transcription factors, co-regulators and additional nuclear proteins; these serve as targets for regulation by hormones and signaling pathways. Evidence that GH regulates transcription at multiple levels is exemplified by analysis of the proto-oncogene c-fos. Among the GH-regulated transcription factors on c-fos, C/EBPbeta appears to be key, since depletion of C/EBPbeta by RNA interference blocks the stimulation of c-fos by GH. The phosphorylation state of C/EBPbeta and its ability to activate transcription are regulated by GH through MAPK and PI3K/Akt-mediated signaling cascades. The acetylation of C/EBPbeta also contributes to its ability to activate c-fos transcription. These and other post-translational modifications of C/EBPbeta appear to be integrated for regulation of transcription by GH. The formation of nuclear proteins into complexes associated with DNA-bound transcription factors is also regulated by GH. Both C/EBPbeta and the co-activator p300 are recruited to c-fos in response to GH, altering c-fos promoter activation. In addition, GH rapidly induces spatio-temporal re-localization of C/EBPbeta within the nucleus. Thus, GH-regulated gene transcription mediated by C/EBPbeta reflects the integration of diverse mechanisms including post-translational modifications, modulation of protein complexes associated with DNA and re-localization of gene regulatory proteins. Similar integration involving other transcription factors, including Stats, appears to be a feature of regulation by GH of other gene targets.Fil: Ceseña, Teresa I.. University of Michigan; Estados UnidosFil: Cui, Tracy Xiao. University of Michigan; Estados UnidosFil: Piwien Pilipuk, Graciela. Fundación Instituto Leloir; ArgentinaFil: Kaplani, Julianne. University of Michigan; Estados UnidosFil: Calinescu, Anda Alexandra. Michigan State University; Estados UnidosFil: Huo, Jeffrey S.. University of Michigan; Estados UnidosFil: Iñiguez Lluhí, Jorge A.. University of Michigan; Estados UnidosFil: Kwok, Roland. University of Michigan; Estados UnidosFil: Schwartz, Jessica. University of Michigan; Estados Unido

    Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina

    Get PDF
    BACKGROUND: Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina’s stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. RESULTS: The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. CONCLUSIONS: These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins

    Adenoviral vector-mediated gene therapy for gliomas: coming of age

    Get PDF
    INTRODUCTION: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED: This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION: The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.Fil: Castro, María G.. University of Michigan; Estados UnidosFil: Candolfi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Wilson, Thomas J.. University of Michigan; Estados UnidosFil: Calinescu, Alexandra. University of Michigan; Estados UnidosFil: Paran, Christopher. University of Michigan; Estados UnidosFil: Kamran, Neha. University of Michigan; Estados UnidosFil: Koschmann, Carl. University of Michigan; Estados UnidosFil: Moreno Ayala, Mariela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Assi, Hikmat. University Of Michigan Medical School;Fil: Lowenstein, Pedro R.. University of Michigan; Estados Unido

    Systemic Delivery of an Adjuvant CXCR4-CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy

    Get PDF
    Glioblastoma (GBM) is an aggressive primary brain cancer, with a 5 year survival of ∼5%. Challenges that hamper GBM therapeutic efficacy include (i) tumor heterogeneity, (ii) treatment resistance, (iii) immunosuppressive tumor microenvironment (TME), and (iv) the blood-brain barrier (BBB). The C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling pathway is activated in GBM and is associated with tumor progression. Although the CXCR4 antagonist (AMD3100) has been proposed as an attractive anti-GBM therapeutic target, it has poor pharmacokinetic properties, and unfavorable bioavailability has hampered its clinical implementation. Thus, we developed synthetic protein nanoparticles (SPNPs) coated with the transcytotic peptide iRGD (AMD3100-SPNPs) to target the CXCL2/CXCR4 pathway in GBM via systemic delivery. We showed that AMD3100-SPNPs block CXCL12/CXCR4 signaling in three mouse and human GBM cell cultures in vitro and in a GBM mouse model in vivo. This results in (i) inhibition of GBM proliferation, (ii) reduced infiltration of CXCR4+ monocytic myeloid-derived suppressor cells (M-MDSCs) into the TME, (iii) restoration of BBB integrity, and (iv) induction of immunogenic cell death (ICD), sensitizing the tumor to radiotherapy and leading to anti-GBM immunity. Additionally, we showed that combining AMD3100-SPNPs with radiation led to long-term survival, with ∼60% of GBM tumor-bearing mice remaining tumor free after rechallenging with a second GBM in the contralateral hemisphere. This was due to a sustained anti-GBM immunological memory response that prevented tumor recurrence without additional treatment. In view of the potent ICD induction and reprogrammed tumor microenvironment, this SPNP-mediated strategy has a significant clinical translation applicability.Fil: Alghamri, Mahmoud S.. University Of Michigan Medical School; Estados UnidosFil: Banerjee, Kaushik. University Of Michigan Medical School; Estados UnidosFil: Mujeeb, Anzar A.. University Of Michigan Medical School; Estados UnidosFil: Mauser, Ava. University of Michigan; Estados UnidosFil: Taher, Ayman. University Of Michigan Medical School; Estados UnidosFil: Thalla, Rohit. University Of Michigan Medical School; Estados UnidosFil: McClellan, Brandon L.. University Of Michigan Medical School; Estados UnidosFil: Varela, Maria L.. University Of Michigan Medical School; Estados UnidosFil: Stamatovic, Svetlana M.. University Of Michigan Medical School; Estados UnidosFil: Martinez Revollar, Gabriela. University Of Michigan Medical School; Estados UnidosFil: Andjelkovic, Anuska V.. University Of Michigan Medical School; Estados UnidosFil: Gregory, Jason V.. University of Michigan; Estados UnidosFil: Kadiyala, Padma. University Of Michigan Medical School; Estados UnidosFil: Calinescu, Alexandra. University Of Michigan Medical School; Estados UnidosFil: Jiménez, Jennifer A.. University of Michigan; Estados UnidosFil: Apfelbaum, April A.. University of Michigan; Estados UnidosFil: Lawlor, Elizabeth R.. University of Washington; Estados UnidosFil: Carney, Stephen. University of Michigan; Estados UnidosFil: Comba, Andrea. University Of Michigan Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faisal, Syed Mohd. University Of Michigan Medical School; Estados UnidosFil: Barissi, Marcus. University Of Michigan Medical School; Estados UnidosFil: Edwards, Marta B.. University Of Michigan Medical School; Estados UnidosFil: Appelman, Henry. University Of Michigan Medical School; Estados UnidosFil: Sun, Yilun. Case Western Reserve University; Estados UnidosFil: Gan, Jingyao. University of Michigan; Estados UnidosFil: Ackermann, Rose. University of Michigan; Estados UnidosFil: Schwendeman, Anna. University of Michigan; Estados UnidosFil: Candolfi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Olin, Michael R.. University of Minnesota; Estados UnidosFil: Lahann, Joerg. University of Michigan; Estados UnidosFil: Lowenstein, Pedro R.. University of Michigan; Estados UnidosFil: Castro, Maria G.. University of Michigan; Estados Unido

    Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish

    Get PDF
    Investigating neuronal and photoreceptor regeneration in the retina of zebra fish has begun to yield insights into both the cellular and molecular means by which this lower vertebrate is able to repair its central nervous system. However, knowledge about the signaling molecules in the local microenvironment of a retinal injury and the transcriptional events they activate during neuronal death and regeneration is still lacking. To identify genes involved in photoreceptor regeneration, we combined light-induced photoreceptor lesions, laser-capture microdissection of the outer nuclear layer (ONL) and analysis of gene expression to characterize transcriptional changes for cells in the ONL as photoreceptors die and are regenerated. Using this approach, we were able to characterize aspects of the molecular signature of injured and dying photoreceptors, cone photoreceptor progenitors, and microglia within the ONL. We validated changes in gene expression and characterized the cellular expression for three novel, extracellular signaling molecules that we hypothesize are involved in regulating regenerative events in the retina

    Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina

    Full text link
    Abstract Background Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina’s stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. Results The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. Conclusions These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins.http://deepblue.lib.umich.edu/bitstream/2027.42/112460/1/13064_2012_Article_215.pd
    corecore