9 research outputs found

    CSVAG: Optimizing Vertical Handoff Using Hybrid Cuckoo Search and Genetic Algorithm-Based Approaches

    No full text
    One of the primary challenges that wireless technology in the present generation is facing is always best connected (ABC) service. This is possible only when the wireless overlay networks follow a cooperative and coordinated process. Vertical handoff is one such process. Concerning this process, the main challenge is to develop algorithms that take care of optimal connection management with proper resource utilization for uninterrupted mobility. In this paper, we develop a new hybrid cuckoo search (CS) and genetic algorithm (GA) that maximizes the performance of heterogeneous wireless systems in terms of minimizing latency, handover failure probability, and enhancing the throughput. We focus on an optimized simulation framework to demonstrate the advantage of our hybrid model. It can be discerned from the simulation analysis that the proposed hybrid technique increases throughput by 17% and 8% compared to the cuckoo search and genetic algorithms applied individually. The performance of the proposed scheme is promising for applications wherein the handoff mechanisms have to be optimized to control frequent handoffs to further reduce the power consumption of user equipment

    Multi-User Massive MIMO System with Adaptive Antenna Grouping for Beyond 5G Communication Network

    No full text
    Error-correcting codes with limited errors and higher spectral efficiency are the main concern for wireless communications. In the current situation, research is increasing daily to satisfy the growing demand for users with improved QoS. Adaptive Antenna Grouping (AAG) with a multilevel space–time trellis coding scheme in the Multi-User Massive MIMO system is the better option to provide flexible data transfer speeds, encoding gains, and gain in diversity with improved spectral efficiency and low decoding complexity, including the power optimization by reduced SNR at the same Symbol Error Rate/Frame Error Rate (SER/FER). The prior aim of maintaining spectral efficiency is achieved by using Massive MIMO. This paper presents the AAG according to the channel state information in the Massive MIMO scenario. The impact of the proposed model on standard ITU-R M.2135 scenarios is also demonstrated in this paper

    Sensors Energy Optimization for Renewable Energy-Based WBANs on Sporadic Elder Movements

    No full text
    The world is advancing to a new era where a new concept is emerging that deals with “wirelessness”. As we know, renewable energy is the future, and this research studied the integration of both fields that results in a futuristic, powerful, and advanced model of wireless body area networks. Every new emerging technology does have some cons; in this case the issue would be the usage of excess energy by the sensors of the model. Our research is focused on solving this excessive usage of energy to promote the optimization of energy. This research work is aimed to design a power-saving protocol (PSP) for wireless body area networks (WBANs) in electronic health monitoring (EHM). Our proposed power-saving protocol (PSP) supports the early detection of suspicious signs or sporadic elder movements. The protocol focuses on solving the excessive energy consumption by the body attached to IoT devices to maximize the power efficiency (EE) of WBAN. In a WSNs network, the number of sensor nodes (SNs) interact with an aggregator and are equipped with energy harvesting capabilities. The energy optimization for the wireless sensor networks is a vital step and the methodology is completely based on renewable energy resources. Our proposed power-saving protocol is based on AI and DNN architectures with a hidden Markov model to obtain the top and bottom limits of the SN sources and a less computationally challenging suboptimal elucidation. The research also addressed many critical technical problems, such as sensor node hardware configuration and energy conservation. The study performed the simulation using the OMNET++ environment and represent through results the source rate to power critical SNs improves WBAN’s scheme performance in terms of power efficiency of Sporadic Elder Movements (SEM) during various daily operations

    Secure Routing-Based Energy Optimization for IoT Application with Heterogeneous Wireless Sensor Networks

    No full text
    Wireless sensor networks (WSNs) and the Internet of Things (IoT) are increasingly making an impact in a wide range of domain-specific applications. In IoT-integrated WSNs, nodes generally function with limited battery units and, hence, energy efficiency is considered as the main design challenge. For homogeneous WSNs, several routing techniques based on clusters are available, but only a few of them are focused on energy-efficient heterogeneous WSNs (HWSNs). However, security provisioning in end-to-end communication is the main design challenge in HWSNs. This research work presents an energy optimizing secure routing scheme for IoT application in heterogeneous WSNs. In our proposed scheme, secure routing is established for confidential data of the IoT through sensor nodes with heterogeneous energy using the multipath link routing protocol (MLRP). After establishing the secure routing, the energy and network lifetime is improved using the hybrid-based TEEN (H-TEEN) protocol, which also has load balancing capacity. Furthermore, the data storage capacity is improved using the ubiquitous data storage protocol (U-DSP). This routing protocol has been implemented and compared with two other existing routing protocols, and it shows an improvement in performance parameters such as throughput, energy efficiency, end-to-end delay, network lifetime and data storage capacity

    Classification and Validation of Spatio-Temporal Changes in Land Use/Land Cover and Land Surface Temperature of Multitemporal Images

    No full text
    Land transfiguration is caused by natural as well as phylogenesis-driving forces, and its consequences for the regional environment are a significant issue in understanding the relationship between society and the environment. Land use/land cover plays a crucial part in the determination, preparation, and execution of administrative approaches to fulfilling basic human needs in the present day. In this study, Visakhapatnam, Vijayawada, Tirupati, A.P., India, is considered as a study area to explain the Land use/land cover (LULC) classification, Land Surface Temperature (LST), and the inverse correlation between LST and the NDVI of Temporal Landsat satellite images at intervals of 5 years from 2000 to 2020. We performed easy and thoroughgoing classifications based on vegetation phenology, using an extended LULC field database, a time series of LANDSAT satellite imagery, and a pixel-based classifier. In total, five land-use and land-cover types have been identified: dense vegetation, vegetation, built-up, barren land, and water. Over the period of inquiry, there were notable increases in the area of built-up land, dense vegetation, and vegetation, whereas there was a marked decrease in water bodies and barren land. The diverse effects of land transformation on the natural environment have been assessed using Land Surface Temperature (LST) and the Normalized Difference Vegetation Index (NDVI). The used technique achieved very good levels of accuracy (90–97%) and a strong kappa coefficient (0.89–0.96), with low commission and omission errors. The variation of the land surface temperature was studied using the Mono-Window algorithm. Change detection, and the transition of the natural land cover to man-made land use, were statistically computed for the study area. Results exposed that there had been significant variations in the land use and cover during the tagged eras. In general, two land use and land cover change patterns were confirmed in the study zone: (i) compatible growth of the zone in built-up areas, barren land, plantations, and shrubs; and (ii) continual diminishment in agriculture and water; maximum urban development took place between 2000 to 2020. The results showed drastic changes in urbanization and decrements in vegetation that had environmental consequences

    Clustering Based Optimal Cluster Head Selection Using Bio-Inspired Neural Network in Energy Optimization of 6LowPAN

    No full text
    The goal of today’s technological era is to make every item smart. Internet of Things (IoT) is a model shift that gives a whole new dimension to the common items and things. Wireless sensor networks, particularly Low-Power and Lossy Networks (LLNs), are essential components of IoT that has a significant influence on daily living. Routing Protocol for Low Power and Lossy Networks (RPL) has become the standard protocol for IoT and LLNs. It is not only used widely but also researched by various groups of people. The extensive use of RPL and its customization has led to demanding research and improvements. There are certain issues in the current RPL mechanism, such as an energy hole, which is a huge issue in the context of IoT. By the initiation of Grid formation across the sensor nodes, which can simplify the cluster formation, the Cluster Head (CH) selection is accomplished using fish swarm optimization (FSO). The performance of the Graph-Grid-based Convolution clustered neural network with fish swarm optimization (GG-Conv_Clus-FSO) in energy optimization of the network is compared with existing state-of-the-art protocols, and GG-Conv_Clus-FSO outperforms the existing approaches, whereby the packet delivery ratio (PDR) is enhanced by 95.14%

    Clustering Based Optimal Cluster Head Selection Using Bio-Inspired Neural Network in Energy Optimization of 6LowPAN

    No full text
    The goal of today’s technological era is to make every item smart. Internet of Things (IoT) is a model shift that gives a whole new dimension to the common items and things. Wireless sensor networks, particularly Low-Power and Lossy Networks (LLNs), are essential components of IoT that has a significant influence on daily living. Routing Protocol for Low Power and Lossy Networks (RPL) has become the standard protocol for IoT and LLNs. It is not only used widely but also researched by various groups of people. The extensive use of RPL and its customization has led to demanding research and improvements. There are certain issues in the current RPL mechanism, such as an energy hole, which is a huge issue in the context of IoT. By the initiation of Grid formation across the sensor nodes, which can simplify the cluster formation, the Cluster Head (CH) selection is accomplished using fish swarm optimization (FSO). The performance of the Graph-Grid-based Convolution clustered neural network with fish swarm optimization (GG-Conv_Clus-FSO) in energy optimization of the network is compared with existing state-of-the-art protocols, and GG-Conv_Clus-FSO outperforms the existing approaches, whereby the packet delivery ratio (PDR) is enhanced by 95.14%

    An Improved Machine Learning Model with Hybrid Technique in VANET for Robust Communication

    No full text
    The vehicular ad hoc network, VANET, is one of the most popular and promising technologies in intelligent transportation today. However, VANET is susceptible to several vulnerabilities that result in an intrusion. This intrusion must be solved before VANET technology can be adopted. In this study, we suggest a unique machine learning technique to improve VANET’s effectiveness. The proposed method incorporates two phases. Phase I detects the DDoS attack using a novel machine learning technique called SVM-HHO, which provides information about the vehicle. Phase II mitigates the impact of a DDoS attack and allocates bandwidth using a reliable resources management technique based on the hybrid whale dragonfly optimization algorithm (H-WDFOA). This proposed model could be an effective technique predicting and utilizing reliable information that provides effective results in smart vehicles. The novel machine learning-based technique was implemented through MATLAB and NS2 platforms. Network quality measurements included congestion, transit, collision, and QoS awareness cost. Based on the constraints, a different cost framework was designed. In addition, data preprocessing of the QoS factor and total routing costs were considered. Rider integrated cuckoo search (RI-CS) is a novel optimization algorithm that combines the concepts of the rider optimization algorithm (ROA) and cuckoo search (CS) to determine the optimal route with the lowest routing cost. The enhanced hybrid ant colony optimization routing protocol (EHACORP) is a networking technology that increases efficiency by utilizing the shortest route. The shortest path of the proposed protocol had the lowest communication overhead and the fewest number of hops between sending and receiving vehicles. The EHACORP involved two stages. To find the distance between cars in phase 1, EHACORP employed a method for calculating distance. Using starting point ant colony optimization, the ants were guided in phase 2 to develop the shortest route with the least number of connections to send information. The relatively short approach increases protocol efficiency in every way. The pairing of DCM and SBACO at H-WDFOA-VANET accelerated packet processing, reduced ant search time, eliminated blind broadcasting, and prevented stagnation issues. The delivery ratio and throughput of the H-WDFOA-packet VANET benefitted from its use of the shortest channel without stagnation, its rapid packet processing, and its rapid convergence speed. In conclusion, the proposed hybrid whale dragonfly optimization approach (H-WDFOA-VANET) was compared with industry standard models, such as rider integrated cuckoo search (RI-CS) and enhanced hybrid ant colony optimization routing protocol (EHACORP). With the proposed method, throughput could be increased. The proposed system had energy consumption values of 2.00000 mJ, latency values of 15.61668 s, and a drop at node 60 of 0.15759. Additionally, a higher throughput was achieved with the new method. With the suggested method, it is possible to meet the energy consumption targets, delay value, and drop value at node 60. The proposed method reduces the drop value at node 80 to 0.15504, delay time to 15.64318 s, and energy consumption to 2.00000 mJ. These outcomes demonstrate the effectiveness of our proposed method. Thus, the proposed system is more efficient than existing systems
    corecore