22 research outputs found

    Nna1 Mediates Purkinje Cell Dendritic Development via Lysyl Oxidase Propeptide and NF-κB Signaling

    Get PDF
    SummaryThe molecular pathways controlling cerebellar Purkinje cell dendrite formation and maturation are poorly understood. The Purkinje cell degeneration (pcd) mutant mouse is characterized by mutations in Nna1, a gene discovered in an axonal regenerative context, but whose actual function in development and disease is unknown. We found abnormal development of Purkinje cell dendrites in postnatal pcdSid mice and linked this deficit to a deletion mutation in exon 7 of Nna1. With single cell gene profiling and virus-based gene transfer, we analyzed a molecular pathway downstream to Nna1 underlying abnormal Purkinje cell dendritogenesis in pcdSid mice. We discovered that mutant Nna1 dramatically increases intranuclear localization of lysyl oxidase propeptide, which interferes with NF-κB RelA signaling and microtubule-associated protein regulation of microtubule stability, leading to underdevelopment of Purkinje cell dendrites. These findings provide insight into Nna1's role in neuronal development and why its absence renders Purkinje cells more vulnerable

    Pyogenic granuloma, an impaired wound healing process, linked to vascular growth driven by FLT4 and the nitric oxide pathway.

    No full text
    Pyogenic granuloma, also called lobular capillary hemangioma, is a condition usually occurring in skin or mucosa and often related to prior local trauma or pregnancy. However, the etiopathogenesis of pyogenic granuloma is poorly understood and whether pyogenic granuloma being a reactive process or a tumor is unknown. In an attempt to clarify this issue, we performed genome-wide transcriptional profiling of laser-captured vessels from pyogenic granuloma and from a richly vascularized tissue, placenta, as well as, from proliferative and involutive hemangiomas. Our study identified a gene signature specific to pyogenic granuloma. In the serial analysis of gene expression (SAGE) database, this signature was linked to 'white blood cells monocytes'. It also demonstrated high enrichment for gene ontology terms corresponding to 'vasculature development' and 'regulation of blood pressure'. This signature included genes of the nitric oxide pathway alongside genes related to hypoxia-induced angiogenesis and vascular injury, three conditions biologically interconnected. Finally, one of the genes specifically associated with pyogenic granuloma was FLT4, a tyrosine-kinase receptor related to pathological angiogenesis. All together, these data advocate for pyogenic granuloma to be a reactive lesion resulting from tissue injury, followed by an impaired wound healing response, during which vascular growth is driven by FLT4 and the nitric oxide pathway

    Distinct requirements for Ku in N nucleotide addition at V(D)J- and non-V(D)J-generated double-strand breaks

    No full text
    Loss or addition of nucleotides at junctions generated by V(D)J recombination significantly expands the antigen-receptor repertoire. Addition of nontemplated (N) nucleotides is carried out by terminal deoxynucleotidyl transferase (TdT), whose only known physiological role is to create diversity at V(D)J junctions during lymphocyte development. Although purified TdT can act at free DNA ends, its ability to add nucleotides (i.e. form N regions) at coding joints appears to depend on the nonhomologous end-joining factor Ku80. Because the DNA ends generated during V(D)J rearrangements remain associated with the RAG proteins after cleavage, TdT might be targeted for N region addition through interactions with RAG proteins or with Ku80 during remodeling of the post-cleavage complex. Such regulated access would help to prevent TdT from acting at other types of broken ends and degrading the fidelity of end joining. To test this hypothesis, we measured TdT’s ability to add nucleotides to endonuclease-induced chromosomal and extrachromosomal breaks. In both cases TdT added nucleotides efficiently to the cleaved DNA ends. Strikingly, the frequency of N regions at non-V(D)J-generated ends was not dependent on Ku80. Thus our results suggest that Ku80 is required to allow TdT access to RAG post-cleavage complexes, providing support for the hypothesis that Ku is involved in disassembling or remodeling the post-cleavage complex. We also found that N regions were abnormally long in the absence of Ku80, indicating that Ku80 may regulate TdT’s activity at DNA ends in vivo

    HRG1 Is Essential for Heme Transport from the Phagolysosome of Macrophages during Erythrophagocytosis

    Get PDF
    SummaryAdult humans have about 25 trillion red blood cells (RBCs), and each second we recycle about 5 million RBCs by erythrophagocytosis (EP) in macrophages of the reticuloendothelial system. Despite the central role for EP in mammalian iron metabolism, the molecules and pathways responsible for heme trafficking during EP remain unknown. Here, we show that the mammalian homolog of HRG1, a transmembrane heme permease in C. elegans, is essential for macrophage iron homeostasis and transports heme from the phagolysosome to the cytoplasm during EP. HRG1 is strongly expressed in macrophages of the reticuloendothelial system and specifically localizes to the phagolysosomal membranes during EP. Depletion of Hrg1 in mouse macrophages causes attenuation of heme transport from the phagolysosomal compartment. Importantly, missense polymorphisms in human HRG1 are defective in heme transport. Our results reveal HRG1 as the long-sought heme transporter for heme-iron recycling in macrophages and suggest that genetic variations in HRG1 could be modifiers of human iron metabolism

    Recurrent EML4-NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy

    No full text
    Infantile fibrosarcoma and congenital mesoblastic nephroma are tumors of infancy traditionally associated with the ETV6-NTRK3 gene fusion. However, a number of case reports have identified variant fusions in these tumors. In order to assess the frequency of variant NTRK3 fusions, and in particular whether the recently identified EML4-NTRK3 fusion is recurrent, 63 archival cases of infantile fibrosarcoma, congenital mesoblastic nephroma, mammary analog secretory carcinoma and secretory breast carcinoma (tumor types that are known to carry recurrent ETV6-NTRK3 fusions) were tested with NTRK3 break-apart FISH, EML4-NTRK3 dual fusion FISH, and targeted RNA sequencing. The EML4-NTRK3 fusion was identified in two cases of infantile fibrosarcoma (one of which was previously described), and in one case of congenital mesoblastic nephroma, demonstrating that the EML4-NTRK3 fusion is a recurrent genetic event in these related tumors. The growing spectrum of gene fusions associated with infantile fibrosarcoma and congenital mesoblastic nephroma along with the recent availability of targeted therapies directed toward inhibition of NTRK signaling argue for alternate testing strategies beyond ETV6 break-apart FISH. The use of either NTRK3 FISH or next-generation sequencing will expand the number of cases in which an oncogenic fusion is identified and facilitate optimal diagnosis and treatment for patients
    corecore