4 research outputs found

    3D hydrodynamic model as a tool for more efficient port management and operations.

    Get PDF
    Ports have been attempting to increase their competitiveness by enhancing their productivity and operate in a more environmentally friendly way. The Port of Seville is located in the Guadalquivir River in the south of Spain and it is the unique Spanish inland port. The estuary has generated and is still generating conflicts of interests. The access channel to the port is being periodically dredged, the natural course has been anthropologically modified several times, original salt marshes have been transformed to grow rice and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO_MAB Biosphere Reserve. Despite its socio-economic and environmental significance there is a surprising lack of scientific and technical information about the environmental interactions between the port activities and the Guadalquivir estuary stakeholders. A 3D hydrodynamic model has been developed to study the tidal regime, water circulation, temperature and salinity distributions, flooding areas and the sediment dynamics in the estuary. The model output has been validated with in situ current speed, direction, water elevation and also with temperature and salinity measurements. Good agreement between modeled and real measurements have been obtained. Our preliminary results show that the vessel traffic management could be improved by using the tidal elevations and currents calculated by the model in the whole estuary. The interactions among the port activities (mainly due of changes in the sediments dynamics), the watershed management and the saline intrusion evolution will be studied in detail. 3D Hydrodynamic Modelling provide spatially explicit information on the key variables governing the dynamics of estuarine areas. The numerical model is a powerful tool to effectively guide the management and operations of ports located in a complex socio-ecological systems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Heat fluxes between the Guadalquivir river and the Gulf of Cádiz Continental Shelf

    Get PDF
    An 18-year time series of daily sea surface temperature of Gulf of Cadiz and an 18-month time series of temperature collected in the vicinity of the Guadalquivir estuary mouth have been analyzed to investigate the heat exchange between the estuary and the adjacent continental shelf. The first time identifies a continental shelf area where seasonal thermal oscillation signal (amplitudes and phase) changes abruptly. In order to explain this anomaly, the second data set allows a description of thermal fluctuations in a wide range of frequencies and an estimation of the upstream heat budget of the Guadalquivir estuary. Results show that high frequency thermal signal, diurnal and semidiurnal, and water flux signal through Guadalquivir mouth, mainly semidiurnal, apparently interact randomly to give a small exchange of thermal energy at high frequency. There is no trace, at the estuary's mouth, of daily heat exchanges with intertidal mudflats probably because it tends to cancel on daily time scales. Results also show that fluctuations of estimated air-sea fluxes force fluctuations of temperature in a quite homogeneous estuarine, with a delay of 20 days. The along-channel thermal energy gradient reaches magnitudes of 300-400 J m-4 near the mouth during the summer and winter and drives the estuary-shelf exchange of thermal energy at seasonal scale. Particularly, the thermal heat imported by the estuary from the shelf area during late fall-winter-early spring of 2008/2009 is balanced by the thermal heat that the estuary exports to the shelf area during late spring-summer of 2008. In summary, Guadalquivir river removes/imports excess of thermal energy towards/from the continental shelf seasonally, as a mechanism to accommodate excess of heat from one side respect to the other side.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Autoridad Portuaria de Sevilla (APS

    Physical characterization of the Guadiana Estuary using a 3D model

    Get PDF
    Guadiana estuary is an intertidal estuary situated in SW of Iberian Península, the latest 50 Km of which constitutes the natural border between Spain and Portugal. Tidal influence extends to about 80 Km upstream. The Guadiana River presents a high seasonal irregularity with wet winters and dry summers. A 3D hydrodynamic model based on the MOHID System has been developed to study the hydrodynamics of the Guadiana Estuary. The model has been validated by comparison the output with in situ data measurements in several points along the estuary.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Modelling extreme climatic events in Guadalquivir Estuary ( Spain)

    Get PDF
    Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Autoridad Portuaria de Sevill
    corecore