7 research outputs found

    Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics

    Get PDF
    Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.This is an author's manuscript of an article from Science 330 (2010)L 88, doi:10.1126/science.1191864.</p

    Standardized Metadata for Human Pathogen/Vector Genomic Sequences

    No full text
    <div><p>High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium’s minimal information (MIxS) and NCBI’s BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a consistent representation of these data in the BRC resources and other repositories that leverage these data, allowing investigators to identify relevant genomic sequences and perform comparative genomics analyses that are both statistically meaningful and biologically relevant.</p></div

    Core Project Attributes.

    No full text
    <p>*Mandatory NCBI BioProject attributes.</p

    Core Sample Attributes.

    No full text
    <p>*Mandatory NCBI BioSample attributes in the “Pathogen: clinical or host-associated” version 1.0 package.</p

    NIAID GSCID/BRC Project and Sample Application Standard Overview.

    No full text
    <p>Coverage of the twelve major data categories in the five data field collections is shown.</p

    Semantic Network of the Core Sample Data Fields.

    No full text
    <p>A semantic representation of the entities relevant to describe infectious disease samples based on the OBI and other OBO Foundry ontologies is shown. Distinctions are made between material entities (blue outlines), information entities and qualities (black outlines), and processes (red outlines). Entities are connected by standard semantic relations, in <i>italic</i>. The subset of entities selected as Core Sample fields are noted with ovals containing the respective Field ID. For example, the OBI:organism <i>has_quality</i> “Specimen Source Gender” (CS5), which is equivalent to the PATO:biological sex, and <i>has_quality</i> PATO:age, and <i>has_quality</i> “Specimen Source Health Status” (CS8), which is equivalent to PATO:organismal status. PATO:age <i>is_quality_measured_as</i> OBI:age since birth measurement datum, which <i>has_measurement_value</i> “Specimen Source Age – Value” (CS6) and <i>has_measurement_unit_label</i> “Specimen Source Age – Unit” (CS7).</p

    Semantic Network of the Core Project Data Fields.

    No full text
    <p>A semantic representation of the entities relevant to describe infectious disease projects based on the OBI and other OBO Foundry ontologies is shown. Distinctions are made between material entities (blue outlines), information entities and qualities (black outlines), and processes (red outlines). Entities are connected by standard semantic relations, in <i>italic</i>. The subset of entities selected as Core Project fields are noted with ovals containing the respective Field ID. For example, both the “Project Title” (CP1) and “Project ID” (CP2) <i>denote</i> an OBI:Investigation; the “Project Description” (CP3) <i>is_about</i> the same OBI:Investigation.</p
    corecore