4 research outputs found

    Single-cell transcription analysis of Plasmodium vivax blood-stage parasites identifies stage- and species-specific profiles of expression.

    No full text
    Plasmodium vivax and P. falciparum, the parasites responsible for most human malaria worldwide, exhibit striking biological differences, which have important clinical consequences. Unfortunately, P. vivax, unlike P. falciparum, cannot be cultivated continuously in vitro, which limits our understanding of its biology and, consequently, our ability to effectively control vivax malaria. Here, we describe single-cell gene expression profiles of 9,215 P. vivax parasites from bloodstream infections of Aotus and Saimiri monkeys. Our results show that transcription of most P. vivax genes occurs during short periods of the intraerythrocytic cycle and that this pattern of gene expression is conserved in other Plasmodium species. However, we also identify a strikingly high proportion of species-specific transcripts in late schizonts, possibly associated with the specificity of erythrocyte invasion. Our findings provide new and robust markers of blood-stage parasites, including some that are specific to the elusive P. vivax male gametocytes, and will be useful for analyzing gene expression data from laboratory and field samples

    Artemisinin resistance phenotypes and K13 inheritance in a Plasmodium falciparum cross and Aotus model

    No full text
    Concerns about malaria parasite resistance to treatment with artemisinin drugs (ARTs) have grown with findings of prolonged parasite clearance t1/2s (>5 h) and their association with mutations in Plasmodium falciparum Kelch-propeller protein K13. Here, we describe a P. falciparum laboratory cross of K13 C580Y mutant with C580 wild-type parasites to investigate ART response phenotypes in vitro and in vivo. After genotyping >400 isolated progeny, we evaluated 20 recombinants in vitro: IC50 measurements of dihydroartemisinin were at similar low nanomolar levels for C580Y- and C580-type progeny (mean ratio, 1.00; 95% CI, 0.62–1.61), whereas, in a ring-stage survival assay, the C580Y-type progeny had 19.6-fold (95% CI, 9.76–39.2) higher average counts. In splenectomized Aotus monkeys treated with three daily doses of i.v. artesunate, t1/2 calculations by three different methods yielded mean differences of 0.01 h (95% CI, −3.66 to 3.67), 0.80 h (95% CI, −0.92 to 2.53), and 2.07 h (95% CI, 0.77–3.36) between C580Y and C580 infections. Incidences of recrudescence were 57% in C580Y (4 of 7) versus 70% in C580 (7 of 10) infections (−13% difference; 95% CI, −58% to 35%). Allelic substitution of C580 in a C580Y-containing progeny clone (76H10) yielded a transformant (76H10C580Rev) that, in an infected monkey, recrudesced regularly 13 times over 500 d. Frequent recrudescences of ART-treated P. falciparum infections occur with or without K13 mutations and emphasize the need for improved partner drugs to effectively eliminate the parasites that persist through the ART component of combination therapy
    corecore