10,038 research outputs found

    Plant canopy shape and the influences on UV exposures to the canopy

    Get PDF
    The solar spectra at selected sites over hemispherical, conical and pinnacle plant canopy models has been evaluated with a dosimetric technique. The irradiance at the sites varies by up to a factor of 0.31 compared to the irradiance on a horizontal plane. The biologically effective (UVBE) exposures evaluated with the dosimetric technique at sites over the plant canopy are up to 19% of that on a horizontal plane. Compared to a spectroradiometer, the technique provides a more practicable method of measuring the UVBE exposures at multiple sites over a plant canopy. Usage of a dosimeter at one site to provide the exposures at that site for different sun angles introduces an error of more than 50%. Knowledge of the spectra allowed the UV and UVBE exposures to be calculated at each site along with the exposures to the entire canopies. These were dependent on the sun angle and the canopy shape. For plant damage, the UVBE was a maximum of about 1.4 mJ cm-2/min. Compared to the hemispherical canopy, the UVBE exposure for generalised plant damage was 45% less for the pinnacle canopy and 23% less for the conical canopy. The canopy exposures could not be determined from measurements of the ambient exposure

    Constraints on a New Post-General Relativity Cosmological Parameter

    Get PDF
    A new cosmological variable is introduced which characterizes the degree of departure from Einstein's General Relativity (GR) with a cosmological constant. The new parameter, \varpi, is the cosmological analog of \gamma, the parametrized post-Newtonian variable which measures the amount of spacetime curvature per unit mass. In the cosmological context, \varpi measures the difference between the Newtonian and longitudinal potentials in response to the same matter sources, as occurs in certain scalar-tensor theories of gravity. Equivalently, \varpi measures the scalar shear fluctuation in a dark energy component. In the context of a "vanilla" LCDM background cosmology, a non-zero \varpi signals a departure from GR or a fluctuating cosmological constant. Using a phenomenological model for the time evolution \varpi=\varpi_0 \rho_{DE}/\rho_{M} which depends on the ratio of energy density in the cosmological constant to the matter density at each epoch, it is shown that the observed cosmic microwave background (CMB) temperature anisotropies limit the overall normalization constant to be -0.4 < \varpi_0 < 0.1 at the 95% confidence level. Existing measurements of the cross-correlations of the CMB with large-scale structure further limit \varpi_0 > -0.2 at the 95% CL. In the future, integrated Sachs-Wolfe and weak lensing measurements can more tightly constrain \varpi_0, providing a valuable clue to the nature of dark energy and the validity of GR.Comment: 9 pages, 7 figures; added reference

    A haptic-enabled multimodal interface for the planning of hip arthroplasty

    Get PDF
    Multimodal environments help fuse a diverse range of sensory modalities, which is particularly important when integrating the complex data involved in surgical preoperative planning. The authors apply a multimodal interface for preoperative planning of hip arthroplasty with a user interface that integrates immersive stereo displays and haptic modalities. This article overviews this multimodal application framework and discusses the benefits of incorporating the haptic modality in this area

    Phantom Accretion by Five Dimensional Charged Black Hole

    Full text link
    This paper deals with the dynamical behavior of phantom field near five dimensional charged black hole. We formulate equations of motion for steady-state spherically symmetric flow of phantom fluids. It is found that phantom energy accretes onto black holes for u<0u<0. Further, the location of critical point of accretion are evaluated that leads to mass to charge ratio for 5D charged black hole. This ratio implies that accretion cannot transform a black hole into a naked singularity. We would like to mention here that this work is an irreducible extension of 4D charged black hole.Comment: 8 pages, accepted for publication in Mod. Phys. Lett.

    K-Shell Auger Spectrum Of Atomic Oxygen

    Get PDF
    We have observed the K-shell Auger spectrum in atomic oxygen. A total of ten transitions originating from the decay of the 4P and 2P states of the O+(1s-1) ion are identified and assigned to final states of the O2+ ion. Relative intensities for each of these transitions are obtained, allowing the extraction of the dependence of the Auger decay on the multiplet structure in both the initial and final states of this basic open-shell atom

    Large-Scale Bulk Motions Complicate the Hubble Diagram

    Full text link
    We investigate the extent to which correlated distortions of the luminosity distance-redshift relation due to large-scale bulk flows limit the precision with which cosmological parameters can be measured. In particular, peculiar velocities of type 1a supernovae at low redshifts may prevent a sufficient calibration of the Hubble diagram necessary to measure the dark energy equation of state to better than 10%, and diminish the resolution of the equation of state time-derivative projected for planned surveys. We consider similar distortions of the angular-diameter distance, as well as the Hubble constant. We show that the measurement of correlations in the large-scale bulk flow at low redshifts using these distance indicators may be possible with a cumulative signal-to-noise ratio of order 7 in a survey of 300 type 1a supernovae spread over 20,000 square degrees.Comment: 6 pages; 4 figure

    Testing General Relativity with Current Cosmological Data

    Full text link
    Deviations from general relativity, such as could be responsible for the cosmic acceleration, would influence the growth of large scale structure and the deflection of light by that structure. We clarify the relations between several different model independent approaches to deviations from general relativity appearing in the literature, devising a translation table. We examine current constraints on such deviations, using weak gravitational lensing data of the CFHTLS and COSMOS surveys, cosmic microwave background radiation data of WMAP5, and supernova distance data of Union2. Markov Chain Monte Carlo likelihood analysis of the parameters over various redshift ranges yields consistency with general relativity at the 95% confidence level.Comment: 11 pages; 7 figures; typographical errors corrected; this is the published versio
    corecore