3,771 research outputs found
Equation of state description of the dark energy transition between quintessence and phantom regimes
The dark energy crossing of the cosmological constant boundary (the
transition between the quintessence and phantom regimes) is described in terms
of the implicitly defined dark energy equation of state. The generalizations of
the models explicitly constructed to exhibit the crossing provide the insight
into the cancellation mechanism which makes the transition possible.Comment: 3 pages, talk given at TAUP200
Natural noise and external wake field seeding in a proton-driven plasma accelerator
We discuss the level of natural shot noise in a proton bunch-driven plasma
accelerator. The required seeding for the plasma wake field must be larger than
the cumulative shot noise. This is the necessary condition for the axial
symmetry of the generated wake and the acceleration quality. We develop an
analytical theory of the noise field and compare it with multi-dimensional
simulations. It appears that the natural noise wake field generated in plasma
by the available at CERN super-protons-synchrotron (SPS) bunches is very low,
at the level of a few 10 kV/m. This fortunate fact eases the requirements on
the seed. Our three dimensional simulations show that even a few tens MeV
electron bunch precursor of a very moderate intensity is sufficient to seed the
proton bunch self-modulation in plasma.Comment: 5 pages, 5 figure
Rip/singularity free cosmology models with bulk viscosity
In this paper we present two concrete models of non-perfect fluid with bulk
viscosity to interpret the observed cosmic accelerating expansion phenomena,
avoiding the introduction of exotic dark energy. The first model we inspect has
a viscosity of the form by
taking into account of the decelerating parameter q, and the other model is of
the form . We give out the
exact solutions of such models and further constrain them with the latest
Union2 data as well as the currently observed Hubble-parameter dataset (OHD),
then we discuss the fate of universe evolution in these models, which confronts
neither future singularity nor little/pseudo rip. From the resulting curves by
best fittings we find a much more flexible evolution processing due to the
presence of viscosity while being consistent with the observational data in the
region of data fitting. With the bulk viscosity considered, a more realistic
universe scenario is characterized comparable with the {\Lambda}CDM model but
without introducing the mysterious dark energy.Comment: 9 pages, 6 figures, submitted to EPJ-
Expanding Universe: Thermodynamical Aspects From Different Models
The pivotal point of the paper is to discuss the behavior of temperature,
pressure, energy density as a function of volume along with determination of
caloric EoS from following two model: & .
The time scale of instability for this two models is discussed. In the paper we
then generalize our result and arrive at general expression for energy density
irrespective of the model. The thermodynamical stability for both of the model
and the general case is discussed from this viewpoint. We also arrive at a
condition on the limiting behavior of thermodynamic parameter to validate the
third law of thermodynamics and interpret the general mathematical expression
of integration constant (what we get while integrating energy
conservation equation) physically relating it to number of micro states. The
constraint on the allowed values of the parameters of the models is discussed
which ascertains stability of universe. The validity of thermodynamical laws
within apparent and event horizon is discussed.Comment: 16 pages, 3 figures(Accepted for publication in "Astrophysics and
Space Science"
Born-Infeld-type phantom on the brane world
We study the evolution of Born-Infeld-type phantom in the second
Randall-Sundrum brane scenario, and find that there exists attractor solution
for the potential with a maximum, which implies a cosmological constant at the
late time. Especially, we discuss the BI model of constant potential without
and with dust matter. In the weak tension limit of the brane, we obtain an
exact solution for the BI phantom and scale factor and show that there is no
big rip during the evolution of the brane.Comment: 5 pages, 2 figures, Reference added, Phys. Rev. D in pres
A New 76Ge Double Beta Decay Experiment at LNGS
This Letter of Intent has been submitted to the Scientific Committee of the
INFN Laboratori Nazionali del Gran Sasso (LNGS) in March 2004. It describes a
novel facility at the LNGS to study the double beta decay of 76Ge using an
(optionally active) cryogenic fluid shield. The setup will allow to scrutinize
with high significance on a short time scale the current evidence for
neutrinoless double beta decay of 76Ge using the existing 76Ge diodes from the
previous Heidelberg-Moscow and IGEX experiments. An increase in the lifetime
limit can be achieved by adding more enriched detectors, remaining thereby
background-free up to a few 100 kg-years of exposure.Comment: 67 pages, 19 eps figures, 17 tables, gzipped tar fil
Equation of State of Oscillating Brans-Dicke Scalar and Extra Dimensions
We consider a Brans-Dicke scalar field stabilized by a general power law
potential with power index at a finite equilibrium value. Redshifting
matter induces oscillations of the scalar field around its equilibrium due to
the scalar field coupling to the trace of the energy momentum tensor. If the
stabilizing potential is sufficiently steep these high frequency oscillations
are consistent with observational and experimental constraints for arbitrary
value of the Brans-Dicke parameter . We study analytically and
numerically the equation of state of these high frequency oscillations in terms
of the parameters and and find the corresponding evolution of the
universe scale factor. We find that the equation of state parameter can be
negative and less than -1 but it is not related to the evolution of the scale
factor in the usual way. Nevertheless, accelerating expansion is found for a
certain parameter range. Our analysis applies also to oscillations of the size
of extra dimensions (the radion field) around an equilibrium value. This
duality between self-coupled Brans-Dicke and radion dynamics is applicable for
where D is the number of extra dimensions.Comment: 10 two-column pages, RevTex4, 8 figures. Added clarifying
discussions, new references. Accepted in Phys. Rev. D (to appear
The Absorptive Extra Dimensions
It is well known that gravity and neutrino oscillation can be used to probe
large extra dimensions in a braneworld scenario. We argue that neutrino
oscillation remains a useful probe even when the extra dimensions are small,
because the brane-bulk coupling is likely to be large. Neutrino oscillation in
the presence of a strong brane-bulk coupling is vastly different from the usual
case of a weak coupling. In particular, some active neutrinos could be absorbed
by the bulk when they oscillate from one kind to another, a signature which can
be taken as the presence of an extra dimension. In a very large class of models
which we shall discuss, the amount of absorption for all neutrino oscillations
is controlled by a single parameter, a property which distinguishes extra
dimensions from other mechanisms for losing neutrino fluxes.Comment: Introduction enlarged; conclusions added. To appear in Phys. Rev.
Phantom Field with O(N) Symmetry in Exponential Potential
In this paper, we study the phase space of phantom model with O(\emph{N})
symmetry in exponential potential. Different from the model without O(\emph{N})
symmetry, the introduction of the symmetry leads to a lower bound on the
equation of state for the existence of stable phantom dominated attractor
phase. The reconstruction relation between the potential of O(\textit{N})
phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.
- …