11,992 research outputs found
Spectral Variations in Early-Type Galaxies as a Function of Mass
We report on the strengths of three spectral indicators - Mg_2, Hbeta, and
Hn/Fe - in the integrated light of a sample of 100 field and cluster E/S0
galaxies. The measured indices are sensitive to age and/or and metallicity
variations within the galaxy sample. Using linear regression analysis for data
with non-uniform errors, we determine the intrinsic scatter present among the
spectral indices of our galaxy sample as a function of internal velocity
dispersion. Our analysis indicates that there is significantly more intrinsic
scatter in the two Balmer line indices than in the Mg_2 index, indicating that
the Balmer indices provide more dynamic range in determining the age of a
stellar population than does the Mg_2 index. Furthermore, the scatter is much
larger for the low velocity dispersion galaxies, indicating that star formation
has occurred more recently in the lower mass galaxies.Comment: 4 pages, 1 figure, 1 table, to appear in the Astrophysical Journal
Letter
The Limits of Quintessence
We present evidence that the simplest particle-physics scalar-field models of
dynamical dark energy can be separated into distinct behaviors based on the
acceleration or deceleration of the field as it evolves down its potential
towards a zero minimum. We show that these models occupy narrow regions in the
phase-plane of w and w', the dark energy equation-of-state and its
time-derivative in units of the Hubble time. Restricting an energy scale of the
dark energy microphysics limits how closely a scalar field can resemble a
cosmological constant. These results, indicating a desired measurement
resolution of order \sigma(w')\approx (1+w), define firm targets for
observational tests of the physics of dark energy.Comment: 4 pages, 2 figure
An inversion in the atmosphere of Titan
A very detailed greenhouse model derives a methane to hydrogen ratio of unity and a minimum surface pressure of 0.4 atm. Based on a surface gravity g = 140 cm sec/2, the minimum CH4 abundance is 30-40 km-A and the minimum H2 abundance varies from 15 to 85 km-A. A model of the atmosphere of Titan is proposed which seems to be consistent with observations and requires a much smaller CH4 abundance (of the order or 2 km-atm). Although no H2 is required, the presence of some H2 is readily accommodated. In this model, a temperature inversion exists in the atmosphere due to absorption of blue and ultraviolet solar radiation by small particles. The absorbed radiation is re-radiated by the dust and by molecules having long wavelength bands such as CH4 7.7 micrometer and ethane at 12.2 micrometer. The brightness temperature at 20 micrometer is primarily due to re-radiation by the dust
Fermion masses in noncommutative geometry
Recent indications of neutrino oscillations raise the question of the
possibility of incorporating massive neutrinos in the formulation of the
Standard Model (SM) within noncommutative geometry (NCG). We find that the NCG
requirement of Poincare duality constrains the numbers of massless quarks and
neutrinos to be unequal unless new fermions are introduced. Possible scenarios
in which this constraint is satisfied are discussed.Comment: 4 pages, REVTeX; typos are corrected in (19), "Possible Solutions"
and "Conclusion" are modified; additional calculational details are included;
references are update
Gear mesh compliance modeling
A computer model has been constructed to simulate the compliance and load sharing in a spur gear mesh. The model adds the effect of rim deflections to previously developed state-of-the-art gear tooth deflection models. The effects of deflections on mesh compliance and load sharing are examined. The model can treat gear meshes composed to two external gears or an external gear driving an internal gear. The model includes deflection contributions from the bending and shear in the teeth, the Hertzian contact deformations, and primary and secondary rotations of the gear rims. The model shows that rimmed gears increase mesh compliance and, in some cases, improve load sharing
Pulse shape simulation for segmented true-coaxial HPGe detectors
A new package to simulate the formation of electrical pulses in segmented
true-coaxial high purity germanium detectors is presented. The computation of
the electric field and weighting potentials inside the detector as well as of
the trajectories of the charge carriers is described. In addition, the
treatment of bandwidth limitations and noise are discussed. Comparison of
simulated to measured pulses, obtained from an 18-fold segmented detector
operated inside a cryogenic test facility, are presented.Comment: 20 pages, 16 figure
- …