225 research outputs found
Dihydropyrimidine-thiones and clioquinol synergize to target beta-amyloid cellular pathologies through a metal-dependent mechanism
The lack of therapies for neurodegenerative diseases arises from our incomplete understanding of their underlying cellular toxicities and the limited number of predictive model systems. It is critical that we develop approaches to identify novel targets and lead compounds. Here, a phenotypic screen of yeast proteinopathy models identified dihydropyrimidine-thiones (DHPM-thiones) that selectively rescued the toxicity caused by β-amyloid (Aβ), the peptide implicated in Alzheimer’s disease. Rescue of Aβ toxicity by DHPM-thiones occurred through a metal-dependent mechanism of action. The bioactivity was distinct, however, from that of the 8-hydroxyquinoline clioquinol (CQ). These structurally dissimilar compounds strongly synergized at concentrations otherwise not competent to reduce toxicity. Cotreatment ameliorated Aβ toxicity by reducing Aβ levels and restoring functional vesicle trafficking. Notably, these low doses significantly reduced deleterious off-target effects caused by CQ on mitochondria at higher concentrations. Both single and combinatorial treatments also reduced death of neurons expressing Aβ in a nematode, indicating that DHPM-thiones target a conserved protective mechanism. Furthermore, this conserved activity suggests that expression of the Aβ peptide causes similar cellular pathologies from yeast to neurons. Our identification of a new cytoprotective scaffold that requires metal-binding underscores the critical role of metal phenomenology in mediating Aβ toxicity. Additionally, our findings demonstrate the valuable potential of synergistic compounds to enhance on-target activities, while mitigating deleterious off-target effects. The identification and prosecution of synergistic compounds could prove useful for developing AD therapeutics where combination therapies may be required to antagonize diverse pathologies.D.F.T was funded by NRSA Fellowship NIH 5F32NS061419. D.F.T. and S.L. were supported by WIBR funds in support of research on Regenerative Disease, the Picower/JPB Foundation, and the Edward N. and Della L. Thome Foundation. G.A.C. and S.L. were funded by a Howard Hughes Medical Institute (HHMI) Collaborative Innovation Award. L.E.B., R.T., and S.E.S. were funded by NIH GM086180, NIH GM067041, and NIH GM111625. (5F32NS061419 - NRSA Fellowship NIH; WIBR funds in support of research on Regenerative Disease; Picower/JPB Foundation; Edward N. and Della L. Thome Foundation; Howard Hughes Medical Institute (HHMI) Collaborative Innovation Award; GM086180 - NIH; NIH GM067041 - NIH; NIH GM111625 - NIH)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705239/Accepted manuscrip
Identifying transgene insertions in Caenorhabditis elegans genomes with Oxford Nanopore sequencing.
Genetically modified organisms are commonly used in disease research and agriculture but the precise genomic alterations underlying transgenic mutations are often unknown. The position and characteristics of transgenes, including the number of independent insertions, influences the expression of both transgenic and wild-type sequences. We used long-read, Oxford Nanopore Technologies (ONT) to sequence and assemble two transgenic strains of Caenorhabditis elegans commonly used in the research of neurodegenerative diseases: BY250 (pPdat-1::GFP) and UA44 (GFP and human α-synuclein), a model for Parkinson's research. After scaffolding to the reference, the final assembled sequences were ∼102 Mb with N50s of 17.9 Mb and 18.0 Mb, respectively, and L90s of six contiguous sequences, representing chromosome-level assemblies. Each of the assembled sequences contained more than 99.2% of the Nematoda BUSCO genes found in the C. elegans reference and 99.5% of the annotated C. elegans reference protein-coding genes. We identified the locations of the transgene insertions and confirmed that all transgene sequences were inserted in intergenic regions, leaving the organismal gene content intact. The transgenic C. elegans genomes presented here will be a valuable resource for Parkinson's research as well as other neurodegenerative diseases. Our work demonstrates that long-read sequencing is a fast, cost-effective way to assemble genome sequences and characterize mutant lines and strains
Genetic interactions among cortical malformation genes that influence susceptibility to convulsions in C. elegans
Epilepsy is estimated to affect 1–2% of the world population, yet remains poorly understood at a molecular level. We have previously established the roundworm Caenorhabditis elegans as a model for investigating genetic susceptibilities to seizure-like convulsions in vivo. Here we investigate the behavioral consequences of decreasing the activity of nematode gene homologs within the LIS1 pathway that are associated with a human cortical malformation termed lissencephaly. Bioinformatic analysis revealed the nud-2 gene, encoding the worm homolog of mammalian effectors of LIS1, termed NDE1 and NDEL1. Phenotypic analysis of animals targeted by RNA interference (RNAi) was performed using a pentylenetetrazole (PTZ) exposure paradigm to induce convulsions. Worms depleted for LIS1 pathway components (NUD-1, NUD-2, DHC-1, CDK-5, and CDKA-1) exhibited significant convulsions following PTZ and RNAi treatment. Strains harboring fluorescent markers for GABAergic neuronal architecture and synaptic vesicle trafficking were employed to discern putative mechanisms accounting for observed convulsion behaviors. We found that depletion of LIS1 pathway components resulted in defective GABA synaptic vesicle trafficking. We also utilized combinations of specific genetic backgrounds to create a sensitized state for convulsion susceptibility and discovered that convulsion effects were significantly enhanced when LIS-1 and other pathway components were compromised within the same animals. Thus, interactions among gene products with LIS-1 may mediate intrinsic thresholds of neuronal synchrony
Genetic interactions among cortical malformation genes that influence susceptibility to convulsions in C. elegans
Epilepsy is estimated to affect 1–2% of the world population, yet remains poorly understood at a molecular level. We have previously established the roundworm Caenorhabditis elegans as a model for investigating genetic susceptibilities to seizure-like convulsions in vivo. Here we investigate the behavioral consequences of decreasing the activity of nematode gene homologs within the LIS1 pathway that are associated with a human cortical malformation termed lissencephaly. Bioinformatic analysis revealed the nud-2 gene, encoding the worm homolog of mammalian effectors of LIS1, termed NDE1 and NDEL1. Phenotypic analysis of animals targeted by RNA interference (RNAi) was performed using a pentylenetetrazole (PTZ) exposure paradigm to induce convulsions. Worms depleted for LIS1 pathway components (NUD-1, NUD-2, DHC-1, CDK-5, and CDKA-1) exhibited significant convulsions following PTZ and RNAi treatment. Strains harboring fluorescent markers for GABAergic neuronal architecture and synaptic vesicle trafficking were employed to discern putative mechanisms accounting for observed convulsion behaviors. We found that depletion of LIS1 pathway components resulted in defective GABA synaptic vesicle trafficking. We also utilized combinations of specific genetic backgrounds to create a sensitized state for convulsion susceptibility and discovered that convulsion effects were significantly enhanced when LIS-1 and other pathway components were compromised within the same animals. Thus, interactions among gene products with LIS-1 may mediate intrinsic thresholds of neuronal synchrony
The Parkinson\u27s Disease Protein α-Synuclein Disrupts Cellular Rab Homeostasis
α-Synuclein (α-syn), a protein of unknown function, is the most abundant protein in Lewy bodies, the histological hallmark of Parkinson\u27s disease (PD). In yeast α-syn inhibits endoplasmic reticulum (ER)-to-Golgi (ER→Golgi) vesicle trafficking, which is rescued by overexpression of a Rab GTPase that regulates ER→Golgi trafficking. The homologous Rab1 rescues α-syn toxicity in dopaminergic neuronal models of PD. Here we investigate this conserved feature of α-syn pathobiology. In a cell-free system with purified transport factors α-syn inhibited ER→Golgi trafficking in an α-syn dose-dependent manner. Vesicles budded efficiently from the ER, but their docking or fusion to Golgi membranes was inhibited. Thus, the in vivo trafficking problem is due to a direct effect of α-syn on the transport machinery. By ultrastructural analysis the earliest in vivo defect was an accumulation of morphologically undocked vesicles, starting near the plasma membrane and growing into massive intracellular vesicular clusters in a dose-dependent manner. By immunofluorescence/immunoelectron microscopy, these clusters were associated both with α-syn and with diverse vesicle markers, suggesting that α-syn can impair multiple trafficking steps. Other Rabs did not ameliorate α-syn toxicity in yeast, but RAB3A, which is highly expressed in neurons and localized to presynaptic termini, and RAB8A, which is localized to post-Golgi vesicles, suppressed toxicity in neuronal models of PD. Thus, α-syn causes general defects in vesicle trafficking, to which dopaminergic neurons are especially sensitive
Gaucher Disease Glucocerebrosidase and α-Synuclein Form a Bidirectional Pathogenic Loop in Synucleinopathies
SummaryParkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies
Recommended from our members
TorsinA participates in endoplasmic reticulum-associated degradation
TorsinA is an ATPase located within the lumen of the endoplasmic reticulum and nuclear envelope, with a mutant form causing early onset torsion dystonia (DYT1). Here we report a new function for torsinA in endoplasmic reticulum-associated degradation (ERAD). Retro-translocation and proteosomal degradation of a mutant cystic fibrosis transmembrane conductance regulator was inhibited by downregulation of torsinA or overexpression of mutant torsinA, and facilitated by increased torsinA. Retro-translocation of cholera toxin was also decreased by downregulation of torsinA. TorsinA associates with proteins implicated in ERAD, including Derlin-1, VIMP, and p97. Further, torsinA reduces endoplasmic reticulum stress in nematodes overexpressing , and fibroblasts from DYT1 dystonia patients are more sensitive than controls to endoplasmic reticulum stress and less able to degrade mutant CFTR. Therefore, compromised ERAD function in the cells of DYT1 patients may increase sensitivity to endoplasmic reticulum stress with consequent alterations in neuronal function contributing to the disease state
Calcineurin determines toxic versus beneficial responses to  α-synuclein
Calcineurin (CN) is a highly conserved Ca[superscript 2+]–calmodulin (CaM)-dependent phosphatase that senses Ca[superscript 2+] concentrations and transduces that information into cellular responses. Ca[superscript 2+] homeostasis is disrupted by α-synuclein (α-syn), a small lipid binding protein whose misfolding and accumulation is a pathological hallmark of several neurodegenerative diseases. We report that α-syn, from yeast to neurons, leads to sustained highly elevated levels of cytoplasmic Ca[superscript 2+], thereby activating a CaM-CN cascade that engages substrates that result in toxicity. Surprisingly, complete inhibition of CN also results in toxicity. Limiting the availability of CaM shifts CN's spectrum of substrates toward protective pathways. Modulating CN or CN's substrates with highly selective genetic and pharmacological tools (FK506) does the same. FK506 crosses the blood brain barrier, is well tolerated in humans, and is active in neurons and glia. Thus, a tunable response to CN, which has been conserved for a billion years, can be targeted to rebalance the phosphatase’s activities from toxic toward beneficial substrates. These findings have immediate therapeutic implications for synucleinopathies.Jeffry M. and Barbara Picower FoundationJPB FoundationHoward Hughes Medical Institute (Collaborative Innovation Award)Eleanor Schwartz Charitable Foundatio
- …